ArticlePDF Available

Design of an environmental chamber for the study of atmospheric chemistry: New developments in the analytical device

Authors:

Abstract

An indoor evacuable environmental chamber has been built at Lisa. The photoreactor is made of Pyrex tube and is equipped with an irradiation device to study photochemical reactions in the UV and visible ranges. A UV-visible DOAS and a long-path FT-IR spectrometry device have been designed to perform analyses of trace components of reactional mixtures during atmospheric simulation experiments. These facilities are unique in France and new developments have been designed and performed in the analytical device to allow a very long path and high stability of the optical path. The entire apparatus is described and the results of calibration experiments are given.
... Typically, Teflon ® materials such as fluorinated ethylene polypropylene (FEP) are used for the chamber walls due to their inert and ultraviolet (UV) transmission properties. However, environmental chambers have also been constructed of stainless steel (De Haan et al., 1999;Glowacki et al., 2007;Duplissy et al., 2010;Wang et al., 2011;Massabò et al., 2018), aluminum (Saathoff et al., 2003), quartz (Barnes et al., 1994), and Pyrex glass (Doussin et al., 1997). Some chambers are designed to be operated indoors (Doussin et al., 1997;Cocker et al., 2001;Saathoff et al., 2003;Carter et al., 2005;Paulsen et al., 2005;Presto et al., 2005;King et al., 2009;Wang et al., 2011;Hu et al., 2014;Wang et al., 2014); others are developed to be used outdoors (Jeffries et al., 1976;Becker, 1996;Klotz et al., 1998;Lee et al., 2004;Rohrer et al., 2005;Chung et al., 2008;Im et al., 2014;Ren et al., 2017). ...
... However, environmental chambers have also been constructed of stainless steel (De Haan et al., 1999;Glowacki et al., 2007;Duplissy et al., 2010;Wang et al., 2011;Massabò et al., 2018), aluminum (Saathoff et al., 2003), quartz (Barnes et al., 1994), and Pyrex glass (Doussin et al., 1997). Some chambers are designed to be operated indoors (Doussin et al., 1997;Cocker et al., 2001;Saathoff et al., 2003;Carter et al., 2005;Paulsen et al., 2005;Presto et al., 2005;King et al., 2009;Wang et al., 2011;Hu et al., 2014;Wang et al., 2014); others are developed to be used outdoors (Jeffries et al., 1976;Becker, 1996;Klotz et al., 1998;Lee et al., 2004;Rohrer et al., 2005;Chung et al., 2008;Im et al., 2014;Ren et al., 2017). A few chamber systems have been designed to be portable (Shibuya et al., 1981;Hennigan et al., 2011;Bonn et al., 2013;Platt et al., 2013;Kaltsonoudis et al., 2019;Vu et al., 2019). ...
Article
Full-text available
Environmental chambers are a commonly used tool for studying the production and processing of aerosols in the atmosphere. Most are located indoors and most are filled with air having prescribed concentrations of a small number of reactive gas species. Here we describe portable chambers that are used outdoors and filled with mostly ambient air. Each all-Teflon® 1 m3 Captive Aerosol Growth and Evolution (CAGE) chamber has a cylindrical shape that rotates along its horizontal axis. A gas-permeable membrane allows exchange of gas-phase species between the chamber and surrounding ambient air with an exchange time constant of approximately 0.5 h. The membrane is non-permeable to particles, and those that are injected into or nucleate in the chamber are exposed to the ambient-mirroring environment until being sampled or lost to the walls. The chamber and surrounding enclosure are made of materials that are highly transmitting across the solar ultraviolet and visible wavelength spectrum. Steps taken in the design and operation of the chambers to maximize particle lifetime resulted in averages of 6.0, 8.2, and 3.9 h for ∼ 0.06, ∼ 0.3, and ∼ 2.5 µm diameter particles, respectively. Two of the newly developed CAGE chamber systems were characterized using data acquired during a 2-month field study in 2016 in a forested area north of Houston, TX, USA. Estimations of measured and unmeasured gas-phase species and of secondary aerosol production in the chambers were made using a zero-dimensional model that treats chemical reactions in the chamber and the continuous exchange of gases with the surrounding air. Concentrations of NO, NO2, NOy, O3, and several organic compounds measured in the chamber were found to be in close agreement with those calculated from the model, with all having near 1.0 best fit slopes and high r2 values. The growth rates of particles in the chambers were quantified by tracking the narrow modes that resulted from injection of monodisperse particles and from occasional new particle formation bursts. Size distributions in the two chambers were measured intermittently 24 h d−1. A bimodal diel particle growth rate pattern was observed, with maxima of about 6 nm h−1 in the late morning and early evening and minima of less than 1 nm h−1 shortly before sunrise and sunset. A pattern change was observed for hourly averaged growth rates between late summer and early fall.
... Kinetic experiments were performed in the CSA chamber. It is a 6 m long -977 L -Pyrex ® reactor (Doussin et al., 1997) equipped with a homogenization system allowing a mixing time below 1 min (Fouqueau et al., 2020b). This chamber has been designed for the investigation of gas-phase chemistry and is thus equipped with instruments dedicated to gas-phase monitoring. ...
Article
Full-text available
Biogenic volatile organic compounds (BVOCs) are intensely emitted by forests and crops into the atmosphere. They can rapidly react with the nitrate radical (NO3) during the nighttime to form a number of functionalized products. Among them, organic nitrates (ONs) have been shown to behave as reservoirs of reactive nitrogen and consequently influence the ozone budget and secondary organic aerosols (SOAs), which are known to have a direct and indirect effect on the radiative balance and thus on climate. Nevertheless, BVOC + NO3 reactions remain poorly understood. Thus, the primary purpose of this study is to furnish new kinetic and mechanistic data for one monoterpene (C10H16), terpinolene, and one sesquiterpene (C15H24), β-caryophyllene, using simulation chamber experiments. These two compounds have been chosen in order to complete the few experimental data existing in the literature. Rate constants have been measured using both relative and absolute methods. They have been measured to be (6.0 ± 3.8) ×10-11 and (1.8 ± 1.4) ×10-11 cm3 molec.−1 s−1 for terpinolene and β-caryophyllene respectively. Mechanistic studies have also been conducted in order to identify and quantify the main reaction products. Total organic nitrates and SOA yields have been determined. Both terpenes appear to be major ON precursors in both gas and particle phases with formation yields of 69 % for terpinolene and 79 % for β-caryophyllene respectively. They are also major SOA precursors, with maximum SOA yields of around 60 % for terpinolene and 90 % for β-caryophyllene. In order to support these observations, chemical analyses of the gas-phase products were performed at the molecular scale using a proton transfer reaction–time-of-flight–mass spectrometer (PTR-ToF-MS) and FTIR. Detected products allowed proposing chemical mechanisms and providing explanations through peroxy and alkoxy reaction pathways.
... For many reactions of atmospheric interest, products have been determined by long-path Fourier transform infrared (FT-IR) absorption spectroscopy in atmospheric simulation chambers used to study reactions at a mechanistic level (Doussin et al., 1997;Glowacki et al., 2007;Nilsson et al., 2009;Seakins, 2010), but this method has relatively poor time resolution compared 75 to direct studies of elementary reactions. Such studies can be influenced by secondary chemistry and wall reactions which may transform reactive products into more stable species on the timescale of the experiment. ...
Article
Full-text available
The chemistry and reaction kinetics of reactive species dominate changes to the composition of complex chemical systems, including Earth's atmosphere. Laboratory experiments to identify reactive species and their reaction products, and to monitor their reaction kinetics and product yields, are key to our understanding of complex systems. In this work we describe the development and characterisation of an experiment using laser flash photolysis coupled with time-resolved mid-infrared (mid-IR) quantum cascade laser (QCL) absorption spectroscopy, with initial results reported for measurements of the infrared spectrum, kinetics, and product yields for the reaction of the CH2OO Criegee intermediate with SO2. The instrument presented has high spectral (
... Kinetic experiments were performed in the CSA chamber. It is a 6 meters long -977 L -Pyrex reactor (Doussin et al., 1997) equipped with a homogenization system allowing a mixing time below one minute (Fouqueau et al., 90 2020b). This chamber has been designed for the investigation of gas phase chemistry and is thus equipped with instruments dedicated to gas phase monitoring. ...
Preprint
Full-text available
Biogenic volatile organic compounds (BVOCs) are subject to an intense emission by forests and crops into the atmosphere. They can rapidly react with the nitrate radical (NO3) during nighttime to form number of functionalized products. Among them, organic nitrates (ON) have been shown to behave as reservoirs of reactive nitrogen and consequently influence the ozone budget and secondary organic aerosols (SOA) which are known to have a direct and indirect effect on the radiative balance, and thus on climate. Nevertheless, BVOCs + NO3 reactions remain poorly understood. Thus, the primary purpose of the follow-up study is to furnish new kinetic and mechanistic data for one monoterpenes (C10H16), terpinolene, and one sesquiterpene (C15H24), β-caryophyllene, using simulation chamber experiments. These two compounds have been chosen in order to fill the lack of experimental data. Rate constants have been measured using both relative and absolute methods. They have been measured to be (5.5 ± 3.8) × 10−11 and (1.7 ± 1.4) × 10−11 cm3 molecule−1 s−1 for terpinolene and β-caryophyllene respectively. Mechanistic studies have also been conducted in order to identify and quantify the main reaction products. Total organic nitrates and SOA yields have been determined. Both terpenes appear to be major ON precursors both in gas and particle phase with formation yields of 69 % for terpinolene and 79 % for β-caryophyllene respectively. They also are major SOA precursor, with maximum SOA yields of around 60 % for both of the compounds. In order to support these observations, chemical analyses of the gas phase products were performed at the molecular scale using PTR-TOF-MS and FTIR. Detected products allowed proposing chemical mechanisms and providing explanations through peroxy and alkoxy reaction pathways.
... The CSA chamber was used for kinetic experiments. It is made of a 6 m long Pyrex ® reactor which has a volume of 977 L (Doussin et al., 1997) and is equipped with a homogenization system that allows for a mixing time below 1 min. This chamber is dedicated to gas-phase studies and is hence equipped with several analytical devices for gas-phase monitoring. ...
Article
Full-text available
Biogenic volatile organic compounds (BVOCs) are intensely emitted by forests and crops into the atmosphere. During the night, they react very rapidly with the nitrate radical (NO3), leading to the formation of a variety of functionalized products including organic nitrates and to large amounts of secondary organic aerosols (SOAs). Organic nitrates (ONs) have been shown not only to play a key role in the transport of reactive nitrogen and consequently in the ozone budget but also to be important components of the total organic-aerosol mass, while SOAs are known to play a direct and indirect role in the climate. However, the reactivity of BVOCs with NO3 remains poorly studied. The aim of this work is to provide new kinetic and mechanistic data for two monoterpenes (C10H16), α- and γ-terpinene, through experiments in simulation chambers. These two compounds, which have very similar chemical structures, have been chosen in order not only to overcome the lack of experimental data but also to highlight the influence of the chemical structure on the reactivity. Rate constants have been measured using both relative and absolute methods. They were found to be (1.2±0.5)×10-10 and (2.9±1.1)×10-11 cm3 molecule−1 s−1 for α- and γ-terpinene respectively. Mechanistic studies have also been conducted in order to identify and quantify the main reaction products. Total organic nitrate and SOA yields have been determined. While organic nitrate formation yields appear to be similar, SOA yields exhibit large differences with γ-terpinene being a much more efficient precursor of aerosols. In order to provide explanations for this difference, chemical analysis of the gas-phase products was performed at the molecular scale. Detected products allowed for proposing chemical mechanisms and providing explanations through peroxy and alkoxy reaction pathways.
... The CSA chamber is made of a large and evacuable Pyrex ® reactor (6 m length, 45 cm diameter and 977 L volume) which has been previously presented in detail (Doussin et al., 1997). It is equipped with a homogenization system which is made of (i) an injection pipe (4 m long, 1 cm diameter and regularly drilled with 1 mm holes), which allows the reactants to be injected all along the chamber; (ii) two stainless steel fans, allowing for a homogenization of gas inside the chamber; and (iii) a closed-circuit Teflon pump connected at both ends, allowing for a recirculation of the gas mixing. ...
Article
Full-text available
An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals at the parts per trillion level in the CSA simulation chamber (at LISA). The technique couples an incoherent broadband light source centered at 662 nm with a high-finesse optical cavity made of two highly reflecting mirrors. The optical cavity which has an effective length of 82 cm allows for up to 3 km of effective absorption and a high sensitivity for NO3 detection (up to 6 ppt for an integration time of 10 s). This technique also allows for NO2 monitoring (up to 9 ppb for an integration time of 10 s). Here, we present the experimental setup as well as tests for its characterization and validation. The validation tests include an intercomparison with another independent technique (Fourier-transform infrared, FTIR) and the absolute rate determination for the reaction trans-2-butene + NO3, which is already well documented in the literature. The value of (4.13 ± 0.45) × 10−13 cm3 molecule−1 s−1 has been found, which is in good agreement with previous determinations. From these experiments, optimal operation conditions are proposed. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (VOCs; with rate constants up to 10−10 cm3 molecule−1 s−1).
... The chamber is equipped with a multiple-reflection optical system with a path length of 180 m interfaced to a FTIR spectrometer (VERTEX 80 from Bruker). Additional details about this smog chamber are given elsewhere (Doussin et al., 1997;Duncianu et al., 2017). ...
Article
Full-text available
Multifunctional organic nitrates, including carbonyl nitrates, are important species formed in NOx-rich atmospheres by the degradation of volatile organic compounds (VOCs). These compounds have been shown to play a key role in the transport of reactive nitrogen and, consequently, in the ozone budget; they are also known to be important components of the total organic aerosol. However, very little is known about their reactivity in both the gas and condensed phases. Following a previous study that we published on the gas-phase reactivity of α-nitrooxy ketones, the photolysis and reaction with OH radicals of 4-nitrooxy-2-butanone and 5-nitrooxy-2-pentanone (which are a β-nitrooxy ketone and γ-nitrooxy ketone, respectively) were investigated for the first time in simulation chambers. The photolysis frequencies were directly measured in the CESAM chamber, which is equipped with a very realistic irradiation system. The jnitrate/jNO2 ratios were found to be (5.9±0.9)×10-3 for 4-nitrooxy-2-butanone and (3.2±0.9)×10-3 for 5-nitrooxy-2-pentanone under our experimental conditions. From these results, it was estimated that ambient photolysis frequencies calculated for typical tropospheric irradiation conditions corresponding to the 1 July at noon at 40∘ N (overhead ozone column of 300 and albedo of 0.1) are (6.1±0.9)×10-5 s−1 and (3.3±0.9)×10-5 s−1 for 4-nitrooxy-2-butanone and 5-nitrooxy-2-pentanone, respectively. These results demonstrate that photolysis is a very efficient sink for these compounds with atmospheric lifetimes of few hours. They also suggest that, similarly to α-nitrooxy ketones, β-nitrooxy ketones have enhanced UV absorption cross sections and quantum yields equal to or close to unity and that γ-nitrooxy ketones have a lower enhancement of cross sections, which can easily be explained by the larger distance between the two chromophore groups. Thanks to a product study, the branching ratio between the two possible photodissociation pathways is also proposed. Rate constants for the reaction with OH radicals were found to be (2.9±1.0)×10-12 and (3.3±0.9)×10-12 cm3 molecule−1 s−1, respectively. These experimental data are in good agreement with rate constants estimated by the structure–activity relationship (SAR) of Kwok and Atkinson (1995) when using the parametrization proposed by Suarez-Bertoa et al. (2012) for carbonyl nitrates. Comparison with photolysis rates suggests that the OH-initiated oxidation of carbonyl nitrates is a less efficient sink than photodissociation but is not negligible in polluted areas.
... Chamber reactor walls can be made of Teflon film (Cocker et al., 2001a;Carter et al., 2005), Pyrex (Doussin et al., 1997), quartz (Barnes et al., 1987), aluminum (Akimoto et al., 1979) or stainless steel (Wang et al., 2011). Except for the AIDA chamber (Saathoff et al., 2003), most larger smog chambers on the order of tens of cubic meters were made of Teflon film for technical and economical reasons (Cocker et al., 2001a;Carter et al., 2005;Pandis et al., 1991;Johnson et al., 2004;Martín-Reviejo and Wirtz, 2005;Rollins et al., 2009). ...
Article
Full-text available
We describe here characterization of a new state-of-the-art smog chamber facility for studying atmospheric gas-phase and aerosol chemistry. The chamber consists of a 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure equipped with black lamps as the light source. Temperature can be set in the range from −10 to 40 °C at accuracy of ±1 °C as measured by eight temperature sensors inside the enclosure and one just inside the reactor. Matrix air can be purified with non-methane hydrocarbons (NMHCs) < 0.5 ppb, NOx/O3/carbonyls < 1 ppb and particles < 1 cm−3. The photolysis rate of NO2 is adjustable between 0 and 0.49 min−1. At 298 K under dry conditions, the average wall loss rates of NO, NO2 and O3 were measured to be 1.41 × 10−4 min−1, 1.39 × 10−4 min−1 and 1.31 × 10−4 min−1, respectively, and the particle number wall loss rate was measured to be 0.17 h−1. Auxiliary mechanisms of this chamber are determined and included in the Master Chemical Mechanism to evaluate and model propene–NOx–air irradiation experiments. The results indicate that this new smog chamber can provide high-quality data for mechanism evaluation. Results of α-pinene dark ozonolysis experiments revealed secondary organic aerosol (SOA) yields comparable to those from other chamber studies, and the two-product model gives a good fit for the yield data obtained in this work. Characterization experiments demonstrate that our Guangzhou Institute of Geochemistry, Chinese Academy Sciences (GIG-CAS), smog chamber facility can be used to provide valuable data for gas-phase chemistry and secondary aerosol formation.
... Experiments were carried out using three different atmospheric simulation chambers, at LISA (Créteil, France), CRAC (Cork, Ireland) and EUPHORE (Valencia, Spain). All three chambers have been described in detail elsewhere (Doussin et al., 1997;Thuener et al., 2004;Becker et al., 1996) and only brief details are provided here. ...
Article
The Earth and Titan, largest satellite of Saturn are often compared by their atmospheric similarities: both have a dense atmosphere mainly made of nitrogen, with a pressure of the order of magnitude of a bar at the surface. However their composition significantly differs because of the second mostly abundant constituent: oxygen on Earth and methane on Titan. Terrestrial atmosphere is therefore oxidizing whereas Titanian atmosphere is reducing. This major difference leads to radically different chemistry patterns for organic species: oxidation lyses organic skeletons whereas photochemistry in reducing conditions leads to an efficient growth of the carbon chains. A reducing atmospheric chemistry therefore produces complex structures and a wide-range of possible chemical functions, providing abiotic organic materials of interest for astrobiology. Titan's atmosphere is therefore considered as a presently observable prebiotic model for Early Earth. During my career I studied both oxidizing and reducing atmospheric mechanism and I am now specifically interested in the contribution of ionic species to the reductive chemical growth. Those efficient ionic processes are actually involved in the production of the solid organic haze surrounding Titan. I plan to study their influence in the prebiotic atmospheric chemistry, which might have occurred on the Early Earth.
Thesis
Les textiles sont des matériaux à la fois quotidiens, omniprésents dans nos intérieurs, mais aussi de prestige, comme en témoigne leur profusion dans les collections des musées et monuments historiques. La préciosité et l’unicité de ceux-ci nécessitent de les préserver sur des périodes prolongées durant lesquelles l’environnement a un impact déterminant. Ce travail de thèse vise à comprendre le rôle précis de l’environnement d’exposition des textiles dans la dégradation des fibres naturelles qui les composent, et plus particulièrement les mécanismes encore méconnus de dégradation liés à la présence de polluants atmosphériques, gazeux et particulaires.Pour y parvenir, une approche environnementale a été utilisée. Tout d’abord, quatre musées et monuments historiques situés dans des milieux contrastés - urbain (Musée de Cluny, Paris), semi-rural (château de Fontainebleau), marin (musée de la Tapisserie de Bayeux et Villa Kérylos, Beaulieu-sur-Mer) - ont été sélectionnés pour représenter la variété des conditions de conservation des textiles en France. Ces sites ont été étudiés de manière exhaustive (microclimat, concentration en polluants gazeux, granulométrie et chimie des aérosols, morphochimie des particules déposées, vitesse d’empoussièrement) afin de disposer de données environnementales complètes. Certaines pièces des monuments ont également été sélectionnées comme plateformes d’exposition de textiles-modèles (coton, laine et soie) pour un vieillissement naturel.Les données environnementales collectées ont été utilisées pour conditionner des expériences de vieillissement accéléré en laboratoire. La chambre CIME, dédiée à l’étude de l’interaction entre les matériaux et leur environnement, a été utilisée pour reproduire le dépôt sec de particules clés identifiées sur sites (mélange de calcite, argiles, suies, mascagnite et halite) et pour exposer les textiles empoussiérés artificiellement et naturellement à plusieurs polluants gazeux (SO2, NO2, CO2, O3, COV). Les concentrations des espèces gazeuses et les conditions thermo-hygriques ont été choisies en accord avec les mesures effectuées sur site.Ce dispositif expérimental, mettant en parallèle mesures et expositions in-situ avec expériences en laboratoire, a permis de mettre en évidence et de suivre à la fois la réactivité des couches de particules et l’évolution des fibres exposées aux polluants.Le dépôt est le premier à réagir en formant des efflorescences. La croissance de celles-ci peut se faire entre les fibres des textiles. Ces néoformations de sulfates, nitrates et formates se produisent indépendamment de la nature du substrat. Elles peuvent être dommageables pour les textiles car leur emplacement au sein des fibres les rend difficiles à dépoussiérer et ces nouveaux mélanges de sels peuvent avoir des points de déliquescence plus bas, favorisant ainsi la formation de films d’eau.Les fibres sont également altérées par le contact avec les polluants gazeux : le SO2 et l’acide formique mènent à la rupture de liaisons des chaînes polymères du coton et des liaisons peptidiques de la soie, tandis que le NO2 engendre plutôt des oxydations des fibres. Le coton est le plus sensible au NO2 (combinaison de l’oxydation et de l’hydrolyse des fibres). Si l’acide formique attaque la laine en entraînant des ruptures de liaisons covalentes, comme pour les autres fibres naturelles étudiées, cette fibre résiste mieux au SO2 que la soie et semble même être protégée des altérations futures suite à son exposition à ce polluant. Dans tous les cas, les altérations provoquées par les polluants gazeux sont exacerbées en présence de dépôt, quelle que soit sa composition chimique.Cette recherche combinant étude environnementale et simulation réaliste des vieillissements de textiles-modèles met clairement en évidence le caractère non protecteur des particules et la nécessité de limiter leur impact en condition intérieure.
ResearchGate has not been able to resolve any references for this publication.