Article

Environmental variations and toxicological responses

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... For example pollution has become a global issue with increasing pollution of the open ocean (Jackson, 2010). Nikinmaa and Tjeerdema (2013) recently suggested that changes in UV-R could affect the responses of sea surface organisms to pollutants and modify the structure of potential toxicants, an area worthy of further investigation. ...
... They are generally considered through the angle of confounders that could mask the effect of contaminant and lead to false evaluation of population and ecosystem health. They could be abiotic factors of natural (temperature, salinity…) or anthropogenic origin (contamination, but also pH, organic matter…) or biotic factors such species interaction, food availability, parasitism (Beketov and Liess, 2008;Beketov et al., 2011;Knillmann et al., 2013;Minguez et al., 2012;Nikinmaa and Tjeerdema, 2013). ...
... Understanding and predicting the effects of contaminants in environmental systems experiencing multiple stresses is a central question in ecotoxicology (Artigas et al., 2012). Contaminant bioavailability and effects could change with the variations of different environmental factors (Nikinmaa and Tjeerdema, 2013). Three different cases can be considered when an environmental factor acts in combination with contaminants (Fischer et al., 2013): (i) the organisms are well adapted to environmental conditions, which do not represent a stress for the organism and there is no interference with contaminant toxicity; (ii) the changes in environmental factors induce alterations in the organism physiology, thus the acclimation to the new condition confers tolerance to specific contaminant; (iii) the environmental conditions represent a stress to the organism, and when contaminants and the environmental factors interfere, antagonistic, synergistic or additive effects can be observed. ...
Article
Full-text available
Aryl hydrocarbon receptor (AhR) and hypoxia-inducible factor-1alpha (HIF-1alpha) are conditionally regulated transcription factor subunits that form heterodimeric complexes with their common partner, AhR nuclear translocator (ARNT/HIF-1beta). Whereas the environmentally toxic compound 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD) initiates the trans-activation activity of AhR:ARNT/HIF-1beta, hypoxic exposure stabilizes HIF-1alpha and functionally activates the HIF-1alpha:ARNT/HIF-1beta complex. To analyze a possible crosstalk between these two pathways in vivo, rats were given dioxin orally and/or were exposed to carbon monoxide (CO), causing functional anemia. We found that exposure to CO inhibited the xenobiotic response while dioxin application had no significant negative impact on hypoxia-mediated gene transcription.
Article
Full-text available
The role of oxygen in regulating patterns of gene expression in mammalian development, physiology, and pathology has received increasing attention, especially after the discovery of the hypoxia-inducible factor (HIF), a transcription factor that has been likened to a "master switch" in the transcriptional response of mammalian cells and tissues to low oxygen. At present, considerably less is known about the molecular responses of nonmammalian vertebrates and invertebrates to hypoxic exposure. Because many animals live in aquatic habitats that are variable in oxygen tension, it is relevant to study oxygen-dependent gene expression in these animals. The purpose of this review is to discuss hypoxia-induced gene expression in fishes from an evolutionary and ecological context. Recent studies have described homologs of HIF in fish and have begun to evaluate their function. A number of physiological processes are known to be altered by hypoxic exposure of fish, although the evidence linking them to HIF is less well developed. The diversity of fish presents many opportunities to evaluate if inter- and intraspecific variation in HIF structure and function correlate with hypoxia tolerance. Furthermore, as an aquatic group, fish offer the opportunity to examine the interactions between hypoxia and other stressors, including pollutants, common in aquatic environments. It is possible, if not likely, that results obtained by studying the molecular responses of fish to hypoxia will find parallels in the oxygen-dependent responses of mammals, including humans. Moreover, novel responses to hypoxia could be discovered through studies of this diverse and species-rich group.
Article
Toxicological responses of an organism are disturbances of function. This as a starting point we review and discuss issues that we consider important in applying functional genomics to aquatic toxicology. Functional genomics includes all the steps in gene expression pathway. Thus, ultimately the goal is to relate genome information to protein activity. In ecotoxicogenomics the toxicological responses must further be combined with responses to natural environmental changes. We focus on fish, but also consider commonly used invertebrates, mainly Daphnia. We first go through the toxicologically important features of genomes of aquatic animals, and then review the reference gene approach to quantify transcript amount. Thereafter we emphasize the need to relate the mRNA and protein levels, and protein activity of individual genes. Finally we discuss how functional genomic investigations may be important in resolving current environmental problems and give our views of valuable future research topics.
Article
Oxygen depravation in mammals leads to the transcriptional induction of a host of target genes to metabolically adapt to this deficiency, including erythropoietin and vascular endothelial growth factor. This response is primarily mediated by the hypoxia-inducible factors (HIFs) which are members of the basic-helix-loop-helix/Per-ARNT-Sim (bHLH/PAS) transcription factor family. The HIFs are primarily regulated via a two-step mechanism of HIF post-translational modification, increasing both protein stability and transactivation capacity. This review aims to summarise our current understanding of these processes, and discuss the important role of the HIFs in the pathophysiology of many human diseases.
Article
The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC)for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailability into AWQC--in essence the computational equivalent of water effect ratio (WER) testing. The theory of the BLM evolved from the gill surface interaction model (GSIM) and the free ion activity model (FIAM). Using an equilibrium geochemical modeling framework, the BLM incorporates the competition of the free metal ion with other naturally occurring cations (e.g., Ca2+, Na+, Mg2-, H+), togetherwith complexation by abiotic ligands [e.g., DOM (dissolved organic matter), chloride, carbonates, sulfide] for binding with the biotic ligand, the site of toxic action on the organism. On the basis of fish gill research, the biotic ligands appear to be active ion uptake pathways (e.g., Na+ transporters for copper and silver, Ca2+ transporters for zinc, cadmium, lead, and cobalt), whose geochemical characteristics (affinity = log K, capacity = Bmax) can be quantified in short-term (3-24 h) in vivo gill binding tests. In general, the greater the toxicity of a particular metal, the higher the log K. The BLM quantitatively relates short-term binding to acute toxicity, with the LA50 (lethal accumulation) being predictive of the LC50 (generally 96 h for fish, 48 h for daphnids). We critically evaluate currently available BLMs for copper, silver, zinc, and nickel and gill binding approaches for cadmium, lead, and cobalt on which BLMs could be based. Most BLMs originate from tests with fish and have been recalibrated for more sensitive daphnids by adjustment of LA50 so as to fit the results of toxicity testing. Issues of concern include the arbitrary nature of LA50 adjustments; possible mechanistic differences between daphnids and fish that may alter log K values, particularly for hardness cations (Ca2+, Mg2+); assumption of fixed biotic ligand characteristics in the face of evidence that they may change in response to acclimation and diet; difficulties in dealing with DOM and incorporating its heterogeneity into the modeling framework; and the paucity of validation exercises on natural water data sets. Important needs include characterization of biotic ligand properties at the molecular level; development of in vitro BLMs, extension of the BLM approach to a wider range of organisms, to the estuarine and marine environment, and to deal with metal mixtures; and further development of BLM frameworks to predict chronic toxicity and thereby generate chronic AWQC.
Article
Two waterborne Cu exposures were performed to investigate if Cu is an ionoregulatory toxicant at all salinities in the killifish, Fundulus heteroclitus. A 30-day flow through exposure in 0 (FW), 5, 11, 22, and 28 ppt (SW) and three [Cu]'s (nominal 0, 30, and 150 microg Cu L(-1)) revealed no apparent Cu induced mortality at the intermediate salinities and high mortality in FW and SW. Fish were sampled at 4, 12, and 30 days after the start of the exposure and both Na+/K+ adenosine triphosphatase (Na+/K+ ATPase) and carbonic anhydrase (CA) activity in the gill and intestine as well as whole body [Na+], and [Cl-] were measured. At the high [Cu] a reduction of whole body [Na+] after 4 days of exposure in FW was the only physiological parameter influenced. A second static 24h Cu exposure was performed in FW, 5, 13, and 29 ppt (SW) and two [Cu]'s (nominal 0 and 110 microg Cu L(-1)). In addition to the parameters listed above, ammonia flux was measured at all salinities and Na+ flux was measured in FW fish. Cu affected ionoregulation in FW where decreased Na+ uptake associated with inhibition of Na+/K+ ATPase led to decreased whole body [Na+] after 24h. The only affected parameter in SW was net ammonia excretion suggesting that Cu is not an ionoregulatory toxicant in SW at the concentrations employed. We propose that physiology rather than chemistry explain much of the variation in Cu toxicity seen across salinities.