Article

Doxorubicin vs. ladirubicin: Methods for improving osteosarcoma treatment

CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. .
Mini Reviews in Medicinal Chemistry (Impact Factor: 2.9). 04/2012; 12(12):1239-49. DOI: 10.2174/138955712802762022
Source: PubMed

ABSTRACT

Osteosarcoma is the most common primary bone tumor in children and adolescents, with a 5-year disease free survival rate of 70%. Current chemotherapy regimens comprise a group of chemotherapeutic agents in which doxorubicin is included. However, tumor resistance to anthracyclines and cardiotoxicity are limiting factors for its usage. Liposomal formulations of doxorubicin improve its anti-cancer effects but are still insufficient. The research in this area has lead to the production of anthracyclines analogues, such as ladirubicin, the leading compound of alkylcyclines. This new anticancer agent has shown promising results in vivo and in vitro, being effective against osteosarcoma cell lines, including those with a multidrug resistant phenotype. In phase I clinical trials, this molecule caused mild side effects and did not induce significant cardiotoxicity at doses ranging from 1 to 16 mg/m2, resulting in a peak plasma concentration (Cmax) ranging from 0.5 to 1.5 μM. The recommended doses for phase II studies were 12 and 14 mg/m2 in heavily and minimally pretreated/non-pretreated patients, respectively. Phase II clinical trials in ovary, breast, colorectal cancer, NSCLC and malignant melanoma are underway. Given the improved molecular targeting efficacy of these new compounds, ongoing approaches have sought to improve drug delivery systems, to improve treatment efficacy while reducing systemic toxicity. The combination of these two approaches may be a good start for the discovery of new treatment for osteosarcoma.

Download full-text

Full-text

Available from: Carlos Novo, Aug 14, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study effects of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) inhibition by RNA interference (RNAi) on sensitivity of U2OS cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, plasmid pSUPER-c-FLIP-siRNA was constructed and then transfected into U2OS cells. A stable transfection cell clone U2OS/pSUPER-c-FLIP-siRNA was screened from the c-FLIP-siRNA transfected cells. RT-PCR and Western blotting were applied to measure the expression of c-FLIP at the levels of mRNA and protein. The results indicated that the expression of c-FLIP was significantly suppressed by the c-FLIP-siRNA in the cloned U2OS/pSUPER-c-FLIP-siRNA as compared with the control cells of U2OS/pSUPER. The cloned cell line of U2OS/pSUPER-c-FLIP-siRNA was further examined for TRAIL- induced cell death and apoptosis in the presence of a pan-antagonist of inhibitor of apoptosis proteins (IAPs) AT406, with or without 4 hrs pretreatment with rocaglamide, an inhibitor of c-FLIP biosynthesis, for 24 hrs. Cell death effects and apoptosis were measured by the methods of MTT assay with 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide and flow cytometry, respectively. The results indicated that TRAIL-induced cell death in U2OS/pSUPER-c-FLIP-siRNA was increased compared with control cells U2OS/pSUPER in the presence or absence of AT406. Flow cytometry indicated that TRAIL-induced cell death effects proceeded through cell apoptosis pathway. However, in the presence of rocaglamide, cell death or apoptotic effects of TRAIL were similar and profound in both cell lines, suggesting that the mechanism of action for both c-FLIP-siRNA and rocaglamide was identical. We conclude that the inhibition of c-FLIP by either c-FLIP-siRNA or rocaglamide can enhance the sensitivity of U2OS to TRAIL-induced apopotosis, suggesting that inhibition of c-FLIP is a good target for anti-cancer therapy.
    No preview · Article · Mar 2015 · Asian Pacific journal of cancer prevention: APJCP