Perceived Vibration Strength in Mobile Devices: The Effect of Weight and Frequency

Haptics Lab., McGill Univ., Montreal, QC, Canada
IEEE Transactions on Haptics (Impact Factor: 1.41). 04/2010; 3(1):56 - 62. DOI: 10.1109/TOH.2009.37
Source: IEEE Xplore


This paper addresses the question of strength perception for vibration signals used in mobile devices. Employing devices similar to standard cell phones and using pulsed vibration signals to combat adaptation effects, experiments were performed to study the effect of weight and underlying on perceived strength. Results shows that for the same measured acceleration on the device, a heavier box is perceived to vibrate with greater strength. Furthermore, signals with higher underlying frequency are perceived to be weaker for the same measured acceleration. While our results are consistent with previous studies, they are obtained for the specific condition of ungrounded, vibrating objects held in the hand. Our results suggest the need for a systematic correction law for use by designers to specify the vibratory characteristics of a device as a function of its weight and of the desired operating frequency.

53 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vibrotactile signals are ubiquitous in everyday life, occurring both when manipulating objects and operating power tools. To bring haptics to ambient systems (defined as being embedded in everyday objects), the vibrotactile channel presents itself as a perceptually and energetically efficient method of conveying haptic information. Mobile phones are by far the most popular haptic-enabled devices. Yet, they are often equipped with common vibration motors of narrow-bandwidth capability. A voice-coil vibrotactile transducer design has been demonstrated to be high-bandwidth and capable of functioning under the same enclosure-vibration paradigm. The transducer was modeled by converting its mechanical free-body diagram into equivalent electrical circuits. The experimentally obtained transfer function was combined with the function established theoretically to obtain the impedance expression for each parameter. Using the aforementioned actuator, mock cellphones were made for vibrotactile perception experiments. Employing pulsed vibration signals to combat adaptation effects, experiments were performed to study the effect of weight and underlying vibration frequency on perceived strength. Results show that for the same measured acceleration on the device, a heavier box is perceived to vibrate with greater strength. Furthermore, signals with higher underlying frequency are perceived to be weaker for the same measured acceleration. The results obtained from ungrounded, vibrating objects are consistent with previous studies using grounded devices. The findings suggest the need for a systematic correction rule that assists cellphone designers in how to modify the device's vibratory characteristics according to its weight and the operating frequency. An ambient haptic device is implemented to synthesize haptic cues resulting from an object rolling down and impacting the inside wall of a tubular cavity. When an object rolls or slides, a variety of cues become available for the estimation of its location inside the cavity. These cues are related to the dynamics of an object subjected to the laws of physics such as gravity and friction. Perception experiments were conducted, in which participants attempted to discriminate among three virtual tubes of different lengths after making the virtual ball roll down. The results support the hypothesis that the subjects mastered the laws related to the dynamics of objects under the influence of gravity and used them to perceive the length of the invisible cavities. Les signaux vibrotactiles sont omniprésents dans la vie quotidienne. Ils se manifestent soit quand on manipule les objets soit lorsque l'on touche des machines. Afin de donner aux "systèmes ambiants" la possibilité de communiquer aux utilisateurs par l'haptique, les signaux vibrotactiles s'avèrent être un moyen efficace, tant au point de vue de leur perception que de la consommation énergétique. Les téléphones portables sont, de loin, les appareils ayant des capacités haptiques les plus communs. Ils sont munis de moteurs vibrants ayant une bande passante limitée. Nous avons réalisé un transducteur vibrotactile à large bande passante et qui permet de faire vibrer la boite entière, comme dans un téléphone portable. Ce transducteur a été modélisé du point de vue de l'électromécanique, puis transformé en circuits électriques équivalents pour en faciliter l'analyse. La fonction de transfert a été obtenue expérimentalement, par puis comparée à la fonction obtenue théoriquement afin d'obtenir l'impédance de chaque composant du transducteur. Ces transducteurs ont été utilisés dans la fabrication d'appareils pour l'étude de la perception. Une série d'expériences a été menée afin étudier l'effet du poids et de la fréquence de vibration sur la perception vibrotactile. Les résultats démontrent que pour une même accélération, on perçoit les vibrations comme étant plus fortes s'il s'agit d'un objet plus lourd. D'autre part, on les perçoit comme étant plus faibles si elles sont d'une fréquence plus élevée. Ces résultats correspondent à peu près à ceux trouvés avec des appareils fixés au sol. Par conséquent, il serait souhaitable d'avoir des règles de correction des caractéristiques des vibrations d'un appareil mobile en fonction de son poids et la fréquence de stimulation. Un dispositif de simulation haptique a également été construit pour simuler les sensations haptiques résultantent d'un objet qui roule ou glisse au long d'une cavité tubulaire et qui heurte des paroies internes. Lorsqu'un objet roule ou glisse, plusieurs types d'indices haptiques sont disponibles et informent sur la position de l'objet. Ces indices sont liés à la dynamique de l'objet soumis aux lois du mouvement qui résulte de la gravité et de la friction. Une expérience de perception a été effectuée, où les participants faisaient rouler la balle virtuelle et tentaient d'estimer la distance parcourue. Les résultats supportent l'hypothèse que l'on maîtrise les invariants liés à la dynamique d'un objet se déplaceant sous l'influence de la gravité, et qu'on est capable de les utiliser pour percevoir la taille de cavités invisibles.
    Full-text · Article ·
  • [Show abstract] [Hide abstract]
    ABSTRACT: Presents a new method based on the matrix pencil approach for estimating the parameters of two dimensional (2D) nuclear magnetic resonance (NMR) signals in noise. This method is capable of locating frequencies anywhere in the 2D plane, along with their decay rates. Simulation results are given to show the performance of this algorithm and its applicability to the practical 2D NMR problem
    No preview · Conference Paper · Nov 1993
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haptic technology, or haptics, is a tactile feedback technology that takes advantage of our sense of touch by applying forces, vibrations, and/or motions to the user through a device. Haptic enabled devices have recently gained much publicity in the computer games industry due to their ability to provide a more immersive experience. The use of haptic in the context of GIS and navigation assistance has not previously been considered. We present an overview of Haptic technologies and provide a commentary on how GIS and haptics may crossover and integrate. To demonstrate the potential of haptics for navigation assistance a simple case-study of using haptic feedback as a navigational assistant in pedestrian route planning software is presented. This case-study uses the OpenStreetMap(OSM) database and Cloudmade routing API.
    Full-text · Article · Jan 2010
Show more