Conference Paper

Experimental results on LPV stabilization of a riderless bicycle

ABB Switzerland Ltd., Switzerland
DOI: 10.1109/ACC.2009.5160397 Conference: American Control Conference, 2009. ACC '09.
Source: IEEE Xplore

ABSTRACT

In this paper the problem of designing a control system aiming at automatically balancing a riderless bicycle in the upright position is considered. Such a problem is formulated as the design of a linear-parameter-varying (LPV) state-feedback controller which guarantees stability of the bicycle when the velocity ranges in a given interval and its derivative is bounded. The designed control system has been implemented on a real riderless bicycle equipped with suitable sensors and actuators, exploiting the processing platform ABB PEC80. The obtained experimental results showed the effectiveness of the proposed approach.

Full-text preview

Available from: diegoregruto.com
  • Source
    • "Por otro lado en Andreo et al. (2009) y Cerone et al. (2010) consideran un modelo LPV de la bicicleta y demuestran que para un amplio rango de velocidad traslacional pueden estabilizar la bicicleta. Los sitemas LPV fueron introducidos por Shamma (1988) como modelos matemáticos para diseñar y garantizar un adecuado desempeño de retroalimentación de manera que el parámetro de programación capture las no linealidades de la planta. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Este trabajo está dedicado al diseño de un sistema de estabilización de una bicicleta basado en observador mediante el enfoque de modelado de sistemas lineales de parámetros variables (LPV) por colocación de polos. El cálculo de las ganancias del control estabilizante y las ganancias del observador se realiza considerando funciones de Lyapunov que dependen del parámetro variable en conjunto con una derivada parcial para restringir la primer derivada del parámetro variable con la finalidad de obtener estabilidad robusta. Como resultado, se obtienen condiciones suficientes para garantizar el cálculo de las ganancias del controlador mediante la solución de un conjunto de desigualdades lineales matriciales parametrizadas (PLMIs). Finalmente, se presentan resultados en simulaciones para demostrar la efectividad del método propuesto.
    Full-text · Conference Paper · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper deals with a dynamic modeling and linear control problem for the circular motion of an unmanned bicycle. It is well known that the bicycle control problem is quite complicated and challenging due to its nonlinearities, unstability and nonminimum phase steering behavior. In order to design a linear controller for the bicycle circular motion, a linear bicycle model of circular motion is derived from fully nonlinear differential equations. The first step is to find an equilibrium roll angle and steering angle given the under turning radius and an angular speed of rear wheel relative to a rear frame. Then at the second step, roll and steering control inputs which maintain equilibrium are calculated. Finally the linearized equations of the circular motion are derived from Lagrange's equations. Some simulation results on the LQ linear control for the circular motion are demonstrated to show the validity of the proposed approach.
    No preview · Article · Jan 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper is a review study in dynamics and rider control of bicycles. The first part gives a brief overview of the modelling of the dynamics of bicycles and the experimental validation. The second part focuses on a review of modelling and measuring human rider control, together with the concepts of handling and manoeuvrability and their experimental validation. The paper concludes with the open ends and promising directions for future work in the field of handling and control of bicycles.
    Full-text · Article · Jul 2013 · Vehicle System Dynamics
Show more