Conference Paper

Human-Like Motion Based On a Geometrical Inverse Kinematics and Energetic Optimization

DOI: 10.1109/IROS.2008.4650641 Conference: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on
Source: IEEE Xplore


For humanoid robotics the cooperation with human beings makes human like behavior indispensable. The robots of our days have to feature human like form and structure. But, more importantly its ways of motion and reactions should be like that expected with human. In this paper, we propose an algorithm for solving the human arm inverse kinematics problem (position and orientation). The proposed method eliminates the singular configurations faced in the classical inverse kinematics methods. Our algorithm is based on the choice of a special reference frames in the workspace of the different parts of human arm. The geometrical projection in local frames gives the aimed results. The proposed redundancy resolution criterion for 7ddl human like arm is obtained through an energetic optimization. The proposed algorithm could be used for humanoid robots arm, in upper limb prosthesis application, as well as in computer animations. It gives the solution for the inverse kinematics of the arm. Simulation results within ADAMS software are presented. Our study takes the result of a detailed grasping research which gives an associated object reference frame indicating the way to grasp the object.

3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: There has been the method of neural networks, optimization algorithms and so on to solving inverse kinematics problems in recent years. In this paper, the kinematics equations of the ABB IRB-1400 spot welding robot with 6-degree of freedom which found on the D-H matrix method have been set up. Based on the method of geometry projection principle, the inverse kinematics problem of robotic manipulators is proposed through the giving position and posture of manipulator. In addition, by using the software ADAMS the validity of inverse kinematics equations based on geometric and the trajectory between two points in the simulation of welding process are verified, which provide the method for the next step of dynamics analysis and the control of trace planning.
    No preview · Conference Paper · Sep 2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the closed-form solutions of IKMs (Inverse Kinematic Models) of the anthropomorphic biped robot HYDRO¨ıD which has 8 active DOFs (Degrees Of Freedom) per leg. From a general point of view, six IKMs are developed in this article. Moreover, a new approach to resolve the redundancy and the particular DOF distribution of the robot is suggested. This approach is validated, and prove e_ciency according to di_erent aspects. Firstly, the increase of the workspace and the flexibility o_ered during walking motion is discussed. Furthermore, the coordination between the two internal/external DOFs of the leg allows the reduction of the joint motion range, and energy consumption. The last point is presented through various simulations of walking motion in the non-redundant and redundant cases. To do that, an existing control strategy, developed at the Laboratoire d'Ing´enierie des Syst`emes de Versailles (LISV), is adapted, improved and used to perform walking motion. It uses homogeneous transformation matrices for the high level control, takes into account gait planning, the robot's structural parameters and the robot's sensor measurements.
    Full-text · Article · Apr 2011 · Mechanism and Machine Theory
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a new criterion for redundancy resolution of human arm in reaching tasks. First, an assumption of minimum Total Potential Energy (TPE) principle is proposed to explain how human exploit the kinematic redundancy of their arms to choose the natural arm postures in reaching tasks. This is the basis as well as the physical meaning of the new criterion. The TPE of human arm includes Gravitational Potential Energy (GPE) and Elastic Potential Energy (EPE) stored in the muscles. Then, a creative simple equivalent model, a virtual torsion spring model with variable stiffness, is proposed to represent the EPE. The stiffness of the torsion spring is related to the target point. Last, to obtain the stiffness of the torsion spring in different target points, many experiments are performed, and multiple linear regression analysis is introduced to determine the relation between the stiffness and target point.
    No preview · Conference Paper · Jul 2013
Show more