Conference Paper

Performance of Hybrid Direct-Sequence Time-Hopping Ultrawide Bandwidth Systems in Nakagami-M Fading Channels

DOI: 10.1109/PIMRC.2007.4394238 Conference: Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on
Source: IEEE Xplore

ABSTRACT

This paper investigates and compares the performance of various ultrawide bandwidth (UWB) systems when communicating over Nakagami-m fading channels. Specifically, the direct-sequence (DS), time-hopping (TH) and hybrid direct-sequence time-hopping (DS-TH) UWB systems are considered. The performance of these UWB systems is studied, when using the conventional single-user correlation detector or the minimum mean-square error (MMSE) multiuser detector. Our simulation results show that the hybrid DS-TH UWB system may outperform a corresponding pure TH-UWB or pure DS-UWB system in terms of the achievable error performance. Given the total spreading gain of the hybrid DS-TH UWB system, there is an optimal setting of the TH spreading factor and DS spreading factor, which results in the best error performance.

Download full-text

Full-text

Available from: Qasim Ahmed
  • Source
    • "Note that, in comparison with the ideal MMSE-MUD as shown in [6], the reduced-rank adaptive LBER-MUD considered in this contribution employs the following advantages. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Design of high-efficiency low-complexity detection schemes for ultrawide bandwidth (UWB) systems is highly challenging. This contribution proposes a reduced-rank adaptive multiuser detection (MUD) scheme operated in least bit-errorrate (LBER) principles for the hybrid direct-sequence timehopping UWB (DS-TH UWB) systems. The principal component analysis (PCA)-assisted rank-reduction technique is employed to obtain a detection subspace, where the reduced-rank adaptive LBER-MUD is carried out. The reduced-rank adaptive LBERMUD is free from channel estimation and does not require the knowledge about the number of resolvable multipaths as well as the knowledge about the multipaths’ strength. In this contribution, the BER performance of the hybrid DS-TH UWB systems using the proposed detection scheme is investigated, when assuming communications over UWB channels modeled by the Saleh-Valenzuela (S-V) channel model. Our studies and performance results show that, given a reasonable rank of the detection subspace, the reduced-rank adaptive LBER-MUD is capable of efficiently mitigating the multiuser interference (MUI) and inter-symbol interference (ISI), and achieving the diversity gain promised by the UWB systems.
    Full-text · Article · Apr 2011 · IEEE Transactions on Vehicular Technology
  • Source
    • "ISI from the latter bits of K users (8) where the matrices and vectors have been defined in detail in [5] [12]. From (8), we observe that the ith data bit conflicts both severe inter-symbol interference (ISI) and multiuser interference (MUI), in addition to the Gaussian background noise. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we consider the low-complexity detection in hybrid direct-sequence time-hopping ultrawide bandwidth (DS-TH UWB) systems. A reduced-rank adaptive LBER detector is proposed, which is operated in the least bit error-rate (LBER) principles within a detection subspace obtained with the aid of the principal component analysis (PCA)- assisted reduced-rank technique. Our reduced-rank adaptive LBER detec- tor is free from channel estimation and does not require the knowledge about the number of resolvable multipaths as well as that about the multipaths' strength. In this paper the bit error-rate (BER) performance of the hybrid DS-TH UWB system is investigated, when communicating over the UWB channels modelled by the Saleh-Valenzuela (S-V) channel model. Our study and simulation results show that this reduced-rank adaptive LBER detector constitutes a feasible detection scheme for deployment in practical pulse-based UWB systems. estimation. It achieves its near-optimum detection with the aid of a training sequence at the start of communication and then main- tains its near-optimum detection based on the decision-directed (DD) principles during the communication (9). The reduced-rank adaptive LBER detector does not require the knowledge about the number of resolvable multipaths as well as that about the locations of the strong resolvable multipaths; It only requires the knowledge (which is still not necessary accurate) about the maximum delay-spread of the UWB channels. Furthermore, the reduced-rank adaptive LBER detector is operated in a reduced-rank detection subspace obtained based on the principal component analysis (PCA) (10). The detection subspace usually has a rank that is significantly lower than that of the original observation space. Owing to the above-mentioned properties of the reduced-rank adaptive LBER detector, we can argue that it is a low-complexity detection scheme, which is feasible for practical
    Full-text · Conference Paper · Jun 2009
  • Source
    • "where the matrices and vectors have been defined in detail in [5] [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this contribution reduced-rank adaptive minimum mean- square error multiuser detector (MMSE-MUD) is proposed and investigated for the hybrid direct-sequence time-hopping ultrawide bandwidth (DS-TH UWB) systems. The adaptive MMSE-MUD is operated based on the normalised least mean-square (NLMS) principles associated with using Taylor polynomial approximation (TPA)-assisted reduced-rank technique. It can be shown that the reduced-rank adaptive technique is beneficial to achieving low-complexity, high convergence speed and robust detection in hybrid DS-TH UWB systems. In this contribution bit-error-rate (BER) performance of the hybrid DS-TH UWB systems using proposed reduced- rank adaptive MMSE-MUD is investigated, when communicating over UWB channels modelled by the Saleh-Valenzuela (S-V) channel model. Our simulation results show that the TPA-assisted reduced-rank adaptive MMSE-MUD is capable of achieving a similar BER performance as that of the full-rank adaptive MMSE-MUD but with significantly lower detection complexity.
    Full-text · Conference Paper · Apr 2009
Show more