S-Palmitoylation and Ubiquitination Differentially Regulate Interferon-induced Transmembrane Protein 3 (IFITM3)-mediated Resistance to Influenza Virus

Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 04/2012; 287(23):19631-41. DOI: 10.1074/jbc.M112.362095
Source: PubMed


The interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that inhibits infection by influenza virus and many other pathogenic viruses. IFITM3 prevents endocytosed virus particles from accessing the host cytoplasm although little is known regarding its regulatory mechanisms. Here we demonstrate that IFITM3 localization to and antiviral remodeling of endolysosomes is differentially regulated by S-palmitoylation and lysine ubiquitination. Although S-palmitoylation enhances IFITM3 membrane affinity and antiviral activity, ubiquitination decreases localization with endolysosomes and decreases antiviral activity. Interestingly, autophagy reportedly induced by IFITM3 expression is also negatively regulated by ubiquitination. However, the canonical ATG5-dependent autophagy pathway is not required for IFITM3 activity, indicating that virus trafficking from endolysosomes to autophagosomes is not a prerequisite for influenza virus restriction. Our characterization of IFITM3 ubiquitination sites also challenges the dual-pass membrane topology predicted for this protein family. We thus evaluated topology by N-linked glycosylation site insertion and protein lipidation mapping in conjunction with cellular fractionation and fluorescence imaging. Based on these studies, we propose that IFITM3 is predominantly an intramembrane protein where both the N and C termini face the cytoplasm. In sum, by characterizing S-palmitoylation and ubiquitination of IFITM3, we have gained a better understanding of the trafficking, activity, and intramembrane topology of this important IFN-induced effector protein.

  • Source
    • "We reported that IFITMs inhibit cell-cell fusion mediated by all three classes of viral fusion proteins, acting at the level of hemifusion initiation (Li et al., 2013). Additional studies revealed that IFITM proteins decrease membrane fluidity, possibly by adopting intramembrane topology and changing curvature (Li et al., 2013; Lin et al., 2013; Yount et al., 2012). Recent results using single-viral-particle fusion assays suggest that IFITMs can also inhibit formation of fusion pores in endosomes (Desai et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The interferon-induced transmembrane (IFITM) proteins have been recently shown to restrict HIV-1 and other viruses. Here, we provide evidence that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env), thereby inhibiting viral infection. IFITM proteins interact with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions does not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes leads to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appears to be virus-strain dependent. Overall, our study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection.
    Full-text · Article · Sep 2015 · Cell Reports
  • Source
    • "The IFITM proteins are members of the CD225 protein superfamily and contain two intramembrane domains (IM1 and IM2), which traverse through the cytosolic-facing leaflet of the lipid bilayer and are joined by a conserved intracellular loop (Yount et al., 2012). IFITM3 plays a critical role in vivo because Ifitm3 À/À mice succumb to a normally mild IAV infection (Bailey et al., 2012; Everitt et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The IFITMs inhibit influenza A virus (IAV) replication in vitro and in vivo. Here, we establish that the antimycotic heptaen, amphotericin B (AmphoB), prevents IFITM3-mediated restriction of IAV, thereby increasing viral replication. Consistent with its neutralization of IFITM3, a clinical preparation of AmphoB, AmBisome, reduces the majority of interferon's protective effect against IAV in vitro. Mechanistic studies reveal that IFITM1 decreases host-membrane fluidity, suggesting both a possible mechanism for IFITM-mediated restriction and its negation by AmphoB. Notably, we reveal that mice treated with AmBisome succumbed to a normally mild IAV infection, similar to animals deficient in Ifitm3. Therefore, patients receiving antifungal therapy with clinical preparations of AmphoB may be functionally immunocompromised and thus more vulnerable to influenza, as well as other IFITM3-restricted viral infections.
    Full-text · Article · Nov 2013 · Cell Reports
  • Source
    • "These proteins play roles in diverse biological processes, such as germ cell maturation during gastrulation (IFITM1-3) [3-5], cell-to-cell adhesion (IFITM1) [6-8], antiviral activity (IFITM1-3) [9-17], and bone formation (IFITM5) [18-22], although the detailed functions of IFITM6, 7, and 10 are unknown at present. In particular, IFITM3 has been a target of intensive studies on its activity against influenza A (H1N1) virus infection and internalization [9-14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, one of the interferon-induced transmembrane (IFITM) family proteins, IFITM3, has become an important target for the activity against influenza A (H1N1) virus infection. In this protein, a post-translational modification by fatty acids covalently attached to cysteine, termed S-palmitoylation, plays a crucial role for the antiviral activity. IFITM3 possesses three cysteine residues for the S-palmitoylation in the first transmembrane (TM1) domain and in the cytoplasmic (CP) loop. Because these cysteines are well conserved in the mammalian IFITM family proteins, the S-palmitoylation on these cysteines is significant for their functions. IFITM5 is another IFITM family protein and interacts with the FK506-binding protein 11 (FKBP11) to form a higher-order complex in osteoblast cells, which induces the expression of immunologically relevant genes. In this study, we investigated the role played by S-palmitoylation of IFITM5 in its interaction with FKBP11 in the cells, because this interaction is a key process for the gene expression. Our investigations using an established reporter, 17-octadecynoic acid (17-ODYA), and an inhibitor for the S-palmitoylation, 2-bromopalmitic acid (2BP), revealed that IFITM5 was S-palmitoylated in addition to IFITM3. Specifically, we found that cysteine residues in the TM1 domain and in the CP loop were S-palmitoylated in IFITM5. Then, we revealed by immunoprecipitation and western blot analyses that the interaction of IFITM5 with FKBP11 was inhibited in the presence of 2BP. The mutant lacking the S-palmitoylation site in the TM1 domain lost the interaction with FKBP11. These results indicate that the S-palmitoylation on IFITM5 promotes the interaction with FKBP11. Finally, we investigated bone nodule formation in osteoblast cells in the presence of 2BP, because IFITM5 was originally identified as a bone formation factor. The experiment resulted in a morphological aberration of the bone nodule. This also indicated that the S-palmitoylation contributes to bone formation.
    Preview · Article · Sep 2013 · PLoS ONE
Show more