Article

MicroRNA profiling: Approaches and considerations

Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA.
Nature Reviews Genetics (Impact Factor: 36.98). 04/2012; 13(5):358-69. DOI: 10.1038/nrg3198
Source: PubMed

ABSTRACT

MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate the expression of thousands of genes in a broad range of organisms in both normal physiological contexts and in disease contexts. miRNA expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and also show promise as biomarkers for disease. Technological advances have spawned a multitude of platforms for miRNA profiling, and an understanding of the strengths and pitfalls of different approaches can aid in their effective use. Here, we review the major considerations for carrying out and interpreting results of miRNA-profiling studies.

  • Source
    • "To get the better data reproducibility , we need some more robust tools to reduce the disturbance of heterogeneity. The advent of the deep sequencing provides a rapid and high throughput tool that can be used to explore the large miRNA pool, and possesses obvious advantages for the identification of miRNA sequence variations and the discovery of novel miRNAs[13]. Plieskatt et al. compared miRNA expression in FFPE ( formalin fixed paraffin-embedded tissue) from NPC cases and controls using both microarray and RNA-Seq technologies, showed that RNA-Seq could additionally indicate unknown miRNAs associated with NPC[14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: MicroRNAs (miRNAs) have been shown to play a critical role in the development and progression of nasopharyngeal carcinoma (NPC). Although accumulating studies have been performed on the molecular mechanisms of NPC, the miRNA regulatory networks in cancer progression remain largely unknown. Laser capture microdissection (LCM) and deep sequencing are powerful tools that can help us to detect the integrated view of miRNA-target network. Methods: Illumina Hiseq2000 deep sequencing was used to screen differentially expressed miRNAs in laser-microdessected biopsies between 12 NPC and 8 chronic nasopharyngitis patients. The result was validated by real-time PCR on 201 NPC and 25 chronic nasopharyngitis patients. The potential candidate target genes of the miRNAs were predicted using published target prediction softwares (RNAhybrid, TargetScan, Miranda, PITA), and the overlay part was analyzed in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological process. The miRNA regulatory network analysis was performed using the Ingenuity Pathway Analysis (IPA) software. Results: Eight differentially expressed miRNAs were identified between NPC and chronic nasopharyngitis patients by deep sequencing. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-34c-5p, miR-375 and miR-449c-5p), 4 up-regulated miRNAs (miR-205-5p, miR-92a-3p, miR-193b-3p and miR-27a-5p). Additionally, the low level of miR-34c-5p (miR-34c) was significantly correlated with advanced TNM stage. GO and KEGG enrichment analyses showed that 914 target genes were involved in cell cycle, cytokine secretion and tumor immunology, and so on. IPA revealed that cancer was the top disease associated with those dysregulated miRNAs, and the genes regulated by miR-34c were in the center of miRNA-mRNA regulatory network, including TP53, CCND1, CDK6, MET and BCL2, and the PI3K/AKT/ mTOR signaling was regarded as a significant function pathway in this network. Conclusion: Our study presents the current knowledge of miRNA regulatory network in NPC with combination of bioinformatics analysis and literature research. The hypothesis of miR-34c regulatory pathway may be beneficial in guiding further studies on the molecular mechanism of NPC tumorigenesis.
    Preview · Article · Dec 2016 · Journal of Experimental & Clinical Cancer Research
  • Source
    • "We also normalised against the commonly used RG U6 and found miR-215-5p tothe use of this specific spliceosomal RNA as RG in microRNA studies because of its variability in structure and abundance as well as its often high degree of variance across samples[19,20,41,42]. Our study demonstrates the importance of correct normalisation in microRNA expression studies, where even small changes in expression can have a vast downstream effect[5]. Comparison across studies requires validated RGs to avoid analytical errors and contradictory results[16,19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are regulatory molecules and suggested as non-invasive biomarkers for molecular diagnostics and prognostics. Altered expression levels of specific microRNAs are associated with hepatitis B virus infection and hepatocellular carcinoma. We previously identified differentially expressed microRNAs with liver-specific target genes in plasma from children with chronic hepatitis B. To further understand the biological role of these microRNAs in the pathogenesis of chronic hepatitis B, we have used the human liver cell line HepG2, with and without HBV replication, after transfection of hepatitis B virus expression vectors. RT-qPCR is the preferred method for microRNA studies, and a careful normalisation strategy, verifying the optimal set of reference genes, is decisive for correctly evaluating microRNA expression levels. The aim of this study was to provide valid reference genes for the human HCC-derived cell line HepG2. A panel of 739 microRNAs was screened to identify the most stably expressed microRNAs, followed by a PubMed search identifying microRNAs previously used as reference genes. Sixteen candidate reference genes were validated by RT-qPCR. Reference gene stabilities were calculated first by standard deviations of ΔCt values and then by geNorm and NormFinder analyses, taking into account the amplification efficiency of each microRNA primer set. The optimal set of reference genes was verified by a target analysis using RT-qPCR on miR-215-5p. We identified miR-24-3p, miR-151a-5p, and miR-425-5p as the most valid combination of reference genes for microRNA RT-qPCR studies in our hepatitis B virus replicating HepG2 cell model.
    Preview · Article · Dec 2016 · BMC Research Notes
  • Source
    • "It is also important to note that several different technologies are used for miRNA expression quantification apart from RT-qPCR, e.g. hybridization-based arrays and sequencing technologies[33], and our findings may not be applicable to all such technologies. In summary , we have identified stable global mean-associated reference miRNAs for use in miRNA expression studies on FFPE cancer tissue from patients with colorectal and pancreatic cancer. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. Methods High-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering. Results We created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50 % reduction over 20 years) but not in CRC. Formalin fixation for 2–6 days decreased miRNA expression 30–65 %. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results. Conclusions We identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE tissue samples. Formalin fixation decreased miRNA expression considerably, while the effect of increasing sample age was estimated to be negligible in a clinical setting.
    Full-text · Article · Dec 2015 · BMC Cancer
Show more