Conference Paper

Cortical blood flow imaging with a portable MEMS based 2-photon fluorescence microendoscope

If you want to read the PDF, try requesting it from the authors.

Abstract

We present a portable microendoscope based on a microelectromechanical systems (MEMS) scanner, compound gradient refractive index micro-lenses and a photonics bandgap fiber (PBF). It overcomes the size (2.0 × 1.9 × 1.1 cm<sup>3</sup>) and weight (less than 3 grams) limitations of conventional two-photon fluorescence microscopy toward freely moving subjects. The microendoscope utilizes a photonic bandgap fiber for laser excitation and large core fiber for fluorescence collection. We demonstrated cortical blood flow imaging in live mice with transverse (Δx) and axial resolutions (Δz) of 1.6 μm and 13.5 μm, respectively.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... A portable two-photon imaging probe used to view suspected tumor sites noninvasively could replace costly and painful biopsy procedures and therefore improve treatment, reduce processing cost, and lessen interpretation inaccuracy in remote areas that lack adequate clinical centers and healthcare facilities [12]. Various types of miniaturized laser scanning TPM schemes have been developed, including scanning cantilever mechanisms utilizing fiber tips [13], [14], small lens [15], [16] and a microelectromechanical (MEMS) scanning micromirror [17]- [20]. ...
Article
Full-text available
We present a fluorescence two-photon laser scanning microscope that uses a soft-magnetic stainless steel microscanner to generate a 2-D Lissajous scanning pattern. The wide-scanning low-voltage driven gimbaled torsional stainless steel microelectromechanical systems (MEMSs) scanner is designed and then fabricated using electrical discharge machining. This technology offers unique advantages by allowing larger mirror surface areas (4 mm (times5) mm) to enhance the fluorescence collection efficiency at low incoming signal level, and providing a rapid prototyping and low-cost alternative to silicon-based MEMS devices, particularly when large displacements and large field of view are required. A maximum total optical scan angle (TOSA) of 20.6° at 112 Hz for a drive power of 200 mW is required for the slow-scan movement, whereas the fast-scan movement occurs at the resonance frequency of 1268 Hz and has a TOSA of 26.6° using a drive power of 400 mW. The soft-magnetic microscanner incorporated in the two-photon hyperspectral fluorescence microscope demonstrates its applicability in two-photon hyperspectral imaging of circulating cancer cells, stem cells, and biological tissue with extrinsic fluorophores. [2013-0226]
Article
Full-text available
Towards overcoming the size limitations of conventional two-photon fluorescence microscopy, we introduce two-photon imaging based on microelectromechanical systems (MEMS) scanners. Single crystalline silicon scanning mirrors that are 0.75 mm x 0.75 mm in size and driven in two dimensions by microfabricated vertical comb electrostatic actuators can provide optical deflection angles through a range of approximately16 degrees . Using such scanners we demonstrated two-photon microscopy and microendoscopy with fast-axis acquisition rates up to 3.52 kHz.
Article
Full-text available
We report a technique for two-photon fluorescence imaging with cellular resolution in awake, behaving mice with minimal motion artifact. The apparatus combines an upright, table-mounted two-photon microscope with a spherical treadmill consisting of a large, air-supported Styrofoam ball. Mice, with implanted cranial windows, are head restrained under the objective while their limbs rest on the ball's upper surface. Following adaptation to head restraint, mice maneuver on the spherical treadmill as their heads remain motionless. Image sequences demonstrate that running-associated brain motion is limited to approximately 2-5 microm. In addition, motion is predominantly in the focal plane, with little out-of-plane motion, making the application of a custom-designed Hidden-Markov-Model-based motion correction algorithm useful for postprocessing. Behaviorally correlated calcium transients from large neuronal and astrocytic populations were routinely measured, with an estimated motion-induced false positive error rate of <5%.
Article
Full-text available
A fast handheld two-photon fiber-optic fluorescence endoscope for three-dimensional (3D) in vivo cellular imaging is developed. The compact handheld probe of the two-photon endoscope can simply be placed into contact with the target tissue to reveal clear 3D surface and subsurface histological images without biopsy. The new system has, to the best of our knowledge, the largest field of view (FOV) of 475 microm x 475 microm and a 3D imaging volume larger than 475 microm x 475 microm x 250 microm. A real-time two-photon fluorescence image is displayed at 0.4 mm(2)/s. The lateral and axial resolutions of the two-photon fluorescence endoscope are better than 1 and 14.5 microm, respectively.
Article
Full-text available
A factor that limits the use of multiphoton microscopy (MPM) in clinical and preclinical studies is the lack of a compact and flexible probe. We report on a miniaturized MPM probe employing a microelectromechanical system (MEMS) scanning mirror and a double-clad photonic crystal fiber (DCPCF). The use of a MEMS mirror and a DCPCF provides many advantages, such as size reduction, rapid and precise scanning, efficient delivery of short pulses, and high collection efficiency of fluorescent signals. The completed probe was 1 cm in outer diameter and 14 cm in length. The developed probe was integrated into an MPM system and used to image fluorescent beads, paper, and biological specimens.
Article
Full-text available
Combined two-photon fluorescence microscopy and femtosecond laser microsurgery has many potential biomedical applications as a powerful "seek-and-treat" tool. Towards developing such a tool, we demonstrate a miniaturized probe which combines these techniques in a compact housing. The device is 10 x 15 x 40 mm(3) in size and uses an aircore photonic crystal fiber to deliver femtosecond laser pulses at 80 MHz repetition rate for imaging and 1 kHz for microsurgery. A fast two-axis microelectromechanical system scanning mirror is driven at resonance to produce Lissajous beam scanning at 10 frames per second. Field of view is 310 microm in diameter and the lateral and axial resolutions are 1.64 microm and 16.4 microm, respectively. Combined imaging and microsurgery is demonstrated using live cancer cells.
Article
Full-text available
With miniaturized tube lenses and a micro-electro-mechanical system (MEMS) mirror, we constructed a miniaturized multiphoton microscope system. Through a two-dimensional asynchronous scanning of the MEMS mirror, 24Hz frame rate can be realized. With a high numerical aperture objective, sub-micron resolution can also be achieved at the same time.
Article
Full-text available
In this paper, we present a novel 2-D microelectromechanical systems (MEMS) scanner that enables dual-axes confocal microscopy. Dual-axes confocal microscopy provides high resolution and long working distance, while also being well suited for miniaturization and integration into endoscopes for in vivo imaging. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer (a silicon wafer bonded on a SOI wafer) and is actuated by self-aligned vertical electrostatic combdrives. Maximum optical deflections of plusmn4.8deg and plusmn5.5deg are achieved in static mode for the outer and inner axes, respectively. Torsional resonant frequencies are at 500 Hz and 2.9 kHz for the outer and inner axes, respectively. The imaging capability of the MEMS scanner is successfully demonstrated in a breadboard setup. Reflectance images with a field of view of are achieved at 8 frames/s. The transverse resolutions are 3.94 mum and 6.68 mum for the horizontal and vertical dimensions, respectively.
Article
Summary both the anesthetized and awake brain, is strong scat- tering of light by neural tissue. This problem is reduced Two-photon microscopy has enabled anatomical and in two-photon microscopy because of excitation with functional fluorescence imaging in the intact brain of near-infrared light. In addition, two-photon excitation is rats. Here, we extend two-photon imaging from anes- confined to the focal plane, permitting efficient fluores- thetized, head-stabilized to awake, freely moving ani- cence detection (Denk et al., 1995). Due to these proper- mals by using a miniaturized head-mounted micro- ties, two-photon microscopy has been the method of scope. Excitation light is conducted to the microscope choice for obtaining optical sections relatively deep in in a single-mode optical fiber, and images are scanned neural tissue; imaging depths of 0.5 mm have been using vibrations of the fiber tip. Microscope perfor- achieved in neocortex (Svoboda et al., 1997; Kleinfeld mance was first characterized in the neocortex of an- et al., 1998). As a second problem, there are brain pulsa- esthetized rats. We readily obtained images of vascu- tions and movements, which cause motion artifacts and lature filled with fluorescently labeled blood and of prevent stable imaging. This problem is manageable layer 2/3 pyramidal neurons filled with a calcium indi- in anesthetized animals but is exacerbated in awake cator. Capillary blood flow and dendritic calcium tran- animals (Fee, 2000). Movement artifacts are expected sients were measured with high time resolution using to be especially severe in freely moving animals, with line scans. In awake, freely moving rats, stable imaging the question arising whether in unrestrained animals was possible except during sudden head movements. stable imaging on the cellular scale is possible at all. Imaging of dendritic activity has been possible in awake,
Article
Confocal scanning laser microscopy (CSLM) was used to study the microcirculation of the brain neocortex in anaesthetized rats. After removal of the dura mater, implantation of a closed cranial window, and intravenous injection of fluorescein, three-dimensional reconstructions of cortical capillaries were performed down to a depth of 250-mu-m below the pial surface. Using a one-dimensional approach (single line scanning), erythrocyte (negative contrast in fluorescently labelled plasma) and leucocyte (labelled with rhodamine 6 G) velocity and supply rate in cortical capillaries were measured. The effect Of CO2-inhalation on capillary blood flow dynamics was studied. Capillaries were imaged continuously for up to 1 h without changes in flow or fluorescence pattern. However, by increasing the laser power 10-100-fold, aggregate formation was induced and capillaries were occluded, possibly due to damage to vascular endothelium. We conclude that CSLM can be used to study morphological and dynamic aspects of fluorescently labelled subsurface structures in organs of experimental animals.
Article
Confocal scanning laser microscopy (CSLM) was used to study the microcirculation of the brain neocortex in anaesthetized rats. After removal of the dura mater, implantation of a closed cranial window, and intravenous injection of fluorescein, three-dimensional reconstructions of cortical capillaries were performed down to a depth of 250 microns below the pial surface. Using a one-dimensional approach (single line scanning), erythrocyte (negative contrast in fluorescently labelled plasma) and leucocyte (labelled with rhodamine 6 G) velocity and supply rate in cortical capillaries were measured. The effect of CO2-inhalation on capillary blood flow dynamics was studied. Capillaries were imaged continuously for up to 1 h without changes in flow or fluorescence pattern. However, by increasing the laser power 10-100-fold, aggregate formation was induced and capillaries were occluded, possibly due to damage to vascular endothelium. We conclude that CSLM can be used to study morphological and dynamic aspects of fluorescently labelled subsurface structures in organs of experimental animals.
Article
Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. The excitation of fluorophores having single-photon absorption in the ultraviolet with a stream of strongly focused subpicosecond pulses of red laser light has made possible fluorescence images of living cells and other microscopic objects. The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation. This technique also provides unprecedented capabilities for three-dimensional, spatially resolved photochemistry, particularly photolytic release of caged effector molecules.
The coupling of brain cell function to the vascular system is the basis for a number of functional neuroimaging methods relevant for human studies. These include methods as diverse as functional magnetic resonance imaging, positron emission tomography, single photon emission tomography, optimal intrinsic signals, as well as near infrared spectroscopy, a method that may have imaging capabilities in the near future. These methods map a specific localized brain activation through a vascular response, such as an increase in cerebral blood flow or a change in blood oxygenation. To understand these direct maps to obtain high resolution maps of localized functional brain activity, a precise knowledge of the specific underlying physiological mechanisms and methodological properties and restrictions is essential. In this article, these fundamental physiological and methodological aspects will be discussed. After reviewing how the techniques cited obtain maps of functional activity, we will discuss our current knowledge of the physiology of coupling with particular reference to the functional imaging techniques. Specifically, we will consider the function, the mediators, and the hemodynamic mechanisms of coupling and point out potential interference by diet, and neurological disease.
Article
Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 micrometers below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of approximately 70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.
Article
We introduce a compact two-photon fluorescence microendoscope based on a compound gradient refractive index endoscope probe, a DC micromotor for remote adjustment of the image plane, and a flexible photonic bandgap fiber for near distortion-free delivery of ultrashort excitation pulses. The imaging head has a mass of only 3.9 g and provides micrometer-scale resolution. We used portable two-photon microendoscopy to visualize hippocampal blood vessels in the brains of live mice.
Article
We report on the development of a miniature, flexible, fiber-optic scanning endoscope for two-photon fluorescence imaging. The endoscope uses a tubular piezoelectric actuator for achieving two-dimensional beam scanning and a double-clad fiber for delivery of the excitation light and collection of two-photon fluorescence. Real-time imaging of fluorescent beads and cancer cells has been performed.
Article
We present a small, lightweight two-photon fiberscope and demonstrate its suitability for functional imaging in the intact brain. Our device consists of a hollow-core photonic crystal fiber for efficient delivery of near-IR femtosecond laser pulses, a spiral fiber-scanner for resonant beam steering, and a gradient-index lens system for fluorescence excitation, dichroic beam splitting, and signal collection. Fluorescence light is remotely detected using a standard photomultiplier tube. All optical components have 1 mm dimensions and the microscope's headpiece weighs only 0.6 grams. The instrument achieves micrometer resolution at frame rates of typically 25 Hz with a field-of-view of up to 200 microns. We demonstrate functional imaging of calcium signals in Purkinje cell dendrites in the cerebellum of anesthetized rats. The microscope will be easily portable by a rat or mouse and thus should enable functional imaging in freely behaving animals.
Conference Paper
Towards overcoming the size limitations of conventional two-photon fluorescence microscopy for brain imaging in freely moving mice, we introduce a portable laser-scanning microendoscope based on a microelectromechanical systems (MEMS) two-dimensional (2-D) scanning mirror, compound gradient refractive index (GRIN) micro-lenses, and a photonic bandgap fiber (PBF). The microendoscope achieves fast line scanning acquisition rates up to 3.5 kHz and micron-scale imaging resolution.