Impact of Eddy Currents and Crowding Effects on High-Frequency Losses in Planar Schottky Diodes

Dept. of Microtechnol. & Nanosci., Chalmers Univ. of Technol., Goteborg, Sweden
IEEE Transactions on Electron Devices (Impact Factor: 2.47). 11/2011; 58(10):3260 - 3269. DOI: 10.1109/TED.2011.2160724
Source: IEEE Xplore


In this paper, we present the influence of eddy currents, skin and proximity effects on high-frequency losses in planar terahertz Schottky diodes. The high-frequency losses, particularly losses due to the spreading resistance, are analyzed as a function of the ohmic-contact mesa geometry for frequencies up to 600 GHz. A combination of 3-D electromagnetic (EM) simulations and parameter extraction based on lumped equivalent circuit is used for the analysis. The extracted low-frequency spreading resistance shows a good agreement with the results from electrostatic simulations and experimental data. By taking into consideration the EM field couplings, the analysis shows that the optimum ohmic-contact mesa thickness is approximately one-skin depth at the operating frequency. It is also shown that, for a typical diode, the onset of eddy current loss starts at ~ 200 GHz, and the onset of a mixture of skin and proximity effects occurs around ~ 400 GHz.

Download full-text


Available from: Jan Stake, Feb 16, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate a rectification mechanism based on quantum tunneling through the narrow Schottky barrier of a sub-micrometric Au/Ti/n-GaAs junction, which is capable of efficient power detection of free-space terahertz radiation beams even without an applied dc bias. Three-dimensional shaping of the junction geometry provides an enhanced zero-bias tunneling probability due to increased electric fields at the junction, resulting in cutoff frequencies up to 0.55 THz, responsivity up to 200 V/W, and noise equivalent power better than 10−9 W/Hz0.5 without applied dc bias.
    Full-text · Article · Dec 2011 · Applied Physics Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a systematic analysis of geometry-dependent parasitics for THz sub-harmonic Schottky mixer diodes. In particular, the diode RF power coupling bandwidth has been studied, showing a trade-off between the air-bridge finger length and finger separation for operating frequencies beyond 1 THz.
    No preview · Conference Paper · Jan 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a self-consistent electro-thermal model for multi-anode Schottky diode multiplier circuits. The thermal model is developed for an $n$-anode multiplier via a thermal resistance matrix approach. The nonlinear temperature responses of the material are taken into consideration by using a linear temperature-dependent approximation for the thermal resistance. The electro-thermal model is capable of predicting the hot spot temperature, providing useful information for circuit reliability study as well as high power circuit design and optimization. Examples of the circuit analysis incorporating the electro-thermal model for a substrateless- and a membrane-based multiplier circuits, operating up to 200 GHz, are demonstrated. Compared to simulations without thermal model, the simulations with electro-thermal model agree better with the measurement results. For the substrateless multiplier, the error between the simulated and measured peak output power is reduced from ${\sim} {\hbox{13}}\hbox{\%}$ to ${\sim} {\hbox{4}}\hbox{\%}$ by including the thermal effect.
    No preview · Article · May 2012 · IEEE Transactions on Terahertz Science and Technology
Show more