Challenges and promises of nano and bio communication networks

Conference Paper · June 2011with4 Reads
DOI: 10.1145/1999946.1999986 · Source: IEEE Xplore
Conference: Networks on Chip (NoCS), 2011 Fifth IEEE/ACM International Symposium on

    Abstract

    In recent years, the importance of interconnects on top-down engineered lithography-based electronic chips has outrun the importance of transistors as a dominant factor of performance. The major challenges in traditional chips are related to delays of non-scalable global interconnects and reliability in general, which leads to the observation that simple scaling will no longer satisfy performance requirements as feature sizes continue to shrink. In addition, the advent of massive-scale multicore architectures, novel silicon and non-silicon manufacturing techniques (such as self-assembly), and an increasing interest in biological components for computing force us to rethink, re-evaluate, and re-design the communication infrastructure and the communication paradigms in the era of nano- and biotechnology. In this paper we present three showcase applications at the forefront of research of bio and nano communication networks. We focus on (1) the signaling and reliability in synthetic bio-circuits, (2) the pattern formation in distributed synthetic bio-networks, and on unstructured nanowire NOC (3). We provide an interdisciplinary and holistic view of such novel communication systems and highlight future challenges and promises.