Currently there is technology capable of detecting arcing conditions in low voltage installations available in the United States and Canada (120 V, 60 Hz). This technology has been developed to increase the protection of those installations against electrical fires. While there is a great interest to apply this technology to higher voltage applications (230/240 Vac, 50/60 Hz) it is important to understand how safety-related requirements might need to change in order to be applicable to these new conditions. This discussion covers aspects governing standard testing methods utilized in the industry, the operational environment of the technology and the need for means that realistically could duplicate a series arc fault in order to have a better understanding of the driving factors impacting both applications. The author suggests an implementation method that can be used as an alternative means of testing which provides a better observation of the occurrence, the stability and the outcome of series arcing.