Analyzing effect of distraction caused by dual-tasks on sharing of brain resources using SOM

Conference Paper · August 2010with15 Reads
DOI: 10.1109/IJCNN.2010.5596860 · Source: IEEE Xplore
Conference: Neural Networks (IJCNN), The 2010 International Joint Conference on


    Drivers' distraction is widely recognized as a leading cause of car accidents. To investigate the distracting effect of dual-tasks involving driving and answering mathematical equations in the stimulus onset asynchrony (SOA) conditions, we design five different cases: two cases involving single-tasks and three cases involving dual-tasks. We have found that there is no statistically significant change in the behavioral data among the three dual-tasks. This raises an important question - is there any detectable effect of the dual tasks on the brain waves? To answer this, we use the Self-Organizing Map (SOM) to recognize the changes, if any, in the Electroencephalography (EEG) dynamics associated with such dual-tasks. Our SOM analysis based on independent components corresponding to EEG signals extracted from Frontal and Motor areas revealed that single- and dual-tasks have distinguishable signatures in the EEG signals. Specifically, each of the two single-task conditions is clustered in a distinct spatial area of the map. Two of the dual-tasks also exhibit distinct spatial clusters, while the third case although shows differences from the other two, the neurons corresponding to this case are sub-clustered reflecting the fact that different subjects may give different priorities to the tasks when confronted with two tasks simultaneously. SOM-based exploratory analysis reveals the existence of distinct EEG signatures among the distracting and non-distracting tasks, although there is no any noticeable difference in the behavioral data among these cases.