Conference Paper

Power oscillation damping control using wide-area signals: A case study on Nordic equivalent system

DOI: 10.1109/TDC.2010.5484295 Conference: Transmission and Distribution Conference and Exposition, 2010 IEEE PES
Source: IEEE Xplore


Power oscillation damping (POD) control employing wide-area signals is illustrated in an equivalent system model representing key characteristics of Nordic power system. Phasor measurement units (PMUs) in Norway and Finland are used to obtain feedback signals for supplementary control of a large SVC unit located in the south-east of Norway. Comparison has been made between two control design approaches- (i) robust linear time invariant model based POD (MBPOD) - dependant on accurate system model and (ii) indirect adaptive POD (IAPOD) - which is fixed structure but time-varying and relies only on measurements. An optimization problem is formulated to design the controller parameters for MBPOD while the IAPOD is based on online Kalman filter estimation and adaptive pole-shifting control. Performances of both MBPOD and IAPOD are found to be quite similar even though IAPOD requires very little prior information about the system. A number of simulations are carried out under different tie-line outages to verify the performance.

16 Reads
  • Source
    • "Statnett SF, the Norwegian transmission system operator, has worked since 2005 in the development, implementation and deployment of an integrated Wide-Area Monitoring System (WAMS) [5], [3], [6], which can be used to continuously monitor power oscillations and alarm operators when they reach undesirable levels [7]. To further improve system damping, and thereby increase power transfer capabilities, Statnett has made efforts in the design, and now reported in this paper, the implementation and testing of Wide-Area Control Systems (WACS) for Wide-Area Power Oscillation Damping [8], [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This article reports the results from the implementation and testing of a Wide-Area Power Oscillation Damper (WAPOD) controlling a 180 Mvar TCR Static Var Compensator (SVC) installed in the Hasle substation of Norwegian 420 kV transmission grid. The WAPOD uses voltage phase angle signals from two distant locations in the Norwegian grid as inputs to the damping controller. The damping controller modulates the voltage reference set point used by the SVC's voltage controller, thereby creating a damping effect. The WAPOD is an extension to the existing Power Oscillation Damping (POD) controller that uses local measurements. A switch-over logic allows for the use of no damping control, local damping control or wide-area control. Field tests were performed during November 2011, and involved the disconnection and re-connection of a 420 kV transmission line. The performance of the WAPOD is compared to that of state-of-the-art local Phasor POD, and when no damping control is enabled. The testing results show that the WAPOD performed satisfactorily and according to the design expectations. These results show that the potential flexibility of the WAPOD to choose, among the different PMU signals, those that have the good observability of inter-area modes can be an advantage to the use of local feedback signals for damping control, as it is current practice today. Further testing of this WAPOD with other PMU signals from locations with stronger observability will be helpful to illustrate the advantage of this flexibility.
    Preview · Conference Paper · Jan 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability to Full-Scale Converter based type. Moreover resemblance of such Wind Power Plant to modern FACTS devices is recognized and exploited. Paper discusses many aspect of damping controller design, including feedback signal selection and control effectiveness with respect to wind farm location. Analysis and design is based on modal analysis, therefore matching modeling approach for wind power plant is proposed. Finally, performance of Wind Power Plant damping control is compared to a regular power system stabilizer installed on a synchronous generator.
    No preview · Conference Paper · Jun 2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low frequency inter-area oscillations are known stability issue of large interconnected electrical grids. It was demonstrated that additional control loop can be applied for static power sources, like FACTS, HVDC or modern Wind Power Plants, to modulate their power output and successfully attenuate these oscillations. Variety of control design methods were proposed for this service. In this paper focus is given to the most popular technique based on residues. Authors demonstrate on a small 4-machine 12-bus grid that residues may not provide sufficient information for effective damping control design. Hence, it is proposed to give more attention to additional indices like transfer function zero location and interactions between mode of interest and other system dynamics. Consequently, additional rules are proposed for residue based damping control design.
    No preview · Conference Paper · Jan 2012
Show more