Characterization of the human properdin gene

Department of Biochemistry, University of Oxford, U.K.
Biochemical Journal (Impact Factor: 4.4). 10/1992; 287 ( Pt 1)(Pt 1):291-7. DOI: 10.1042/bj2870291
Source: PubMed


A cosmid clone containing the complete coding sequence of the human properdin gene has been characterized. The gene is located at one end of the approximately 40 kb cosmid insert and approximately 8.2 kb of the sequence data have been obtained from this region. Two discrepancies with the published cDNA sequence [Nolan, Schwaeble, Kaluz, Dierich & Reid (1991) Eur. J. Immunol. 21, 771-776] have been resolved. Properdin has previously been described as a modular protein, with the majority of its sequence composed of six tandem repeats of a sequence motif of approximately 60 amino acids which is related to the type-I repeat sequence (TSR), initially described in thrombospondin [Lawler & Hynes (1986) J. Cell Biol. 103, 1635-1648; Goundis & Reid (1988), Nature (London) 335, 82-85]. Analysis of the genomic sequence data indicates that the human properdin gene is organized into ten exons which span approximately 6 kb of the genome. TSRs 2-5 are coded for by discrete, symmetrical exons (phase 1-1), which supports the hypothesis that modular proteins evolved by a process involving exon shuffling. TSR1 is also coded for by a discrete exon, but the boundaries are asymmetrical (phase 2-1). The sequence coding for the sixth TSR is split across the final two exons of the gene with the first 38 amino acids of the repeat coded for by an asymmetric exon (phase 1-2). This split at the genomic level has been shown, by alignment analysis, to be reflected at the protein level with the division of repeat 6 into TSR-like and TSR-unlike sequences.

Full-text preview

Available from:
  • Source
    • "The human properdin gene has 10 exons with a length of ∼ 6 kb (Nolan et al., 1992). The first exon is untranslated, the second exon consists of the translation start site as well as a sequence which encodes 24 amino acids of signal peptide and the N-terminal region is encoded by exon 3. Exon 4–8 encode each of the TSRs 1–5, exon 9 encodes the first 38 amino acids of TSR6 with the remaining part of TSR6 encoded by exon 10 and the C-terminal region is also encoded by exon 10 (Nolan et al., 1992; Higgins et al., 1995). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Properdin and factor H are two key regulatory proteins having opposite functions in the alternative complement pathway. Properdin up-regulates the alternative pathway by stabilizing the C3bBb complex, whereas factor H downregulates the pathway by promoting proteolytic degradation of C3b. While factor H is mainly produced in the liver, there are several extrahepatic sources. In addition to the liver, factor H is also synthesized in fetal tubuli, keratinocytes, skin fibroblasts, ocular tissue, adipose tissue, brain, lungs, heart, spleen, pancreas, kidney, muscle, and placenta. Neutrophils are the major source of properdin, and it is also produced by monocytes, T cells and bone marrow progenitor cell line. Properdin is released by neutrophils from intracellular stores following stimulation by N-formyl-methionine-leucine-phenylalanine (fMLP) and tumor necrosis factor alpha (TNF-α). The HEP G2 cells derived from human liver has been found to produce functional properdin. Endothelial cells also produce properdin when induced by shear stress, thus is a physiological source for plasma properdin. The diverse range of extrahepatic sites for synthesis of these two complement regulators suggests the importance and need for local availability of the proteins. Here, we discuss the significance of the local synthesis of properdin and factor H. This assumes greater importance in view of recently identified unexpected and novel roles of properdin and factor H that are potentially independent of their involvement in complement regulation.
    Full-text · Article · Apr 2013 · Frontiers in Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most of the proteins and receptors associated with the activation and control of the complement system have now been cloned at both the cDNA and genomic levels and chromosome assignments are available for the majority of the genes (Table 3.1). There are two distinct clusters of complement genes: the C2, C4 and factor B genes on human chromosome 6 at 6p21.3, which constitute the MHC class III complement genes; the factor H, C4-bp (a and p), CR1, CR2, MCP and DAF genes, present on human chromosome 1 at lq32, which constitute the regulators of complement activation (RCA) cluster. Apart from the genes encoding the closely related A-, B- and C-chains of human Clq (on lp34-lp36.3) and pairs of genes, such as components C6 and C7 (on 5q), the C8a and C8(3 chains (lp34) and the human C1r and C1s proenzymes (on 12pl3), the genes for other complement proteins and receptors are distributed on quite a wide variety of different chromosomes. In view of the structural and functional similarity between the terminal components of complement C6, C7, C8a, C8(3, C9 and perforin, it might have been expected that they would perhaps all be linked, but this does not appear to be the case.
    No preview · Chapter · Jan 1993
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human properdin deficiency is an X-linked disorder strongly predisposing to meningococcal disease which has been recorded in over 50 cases of various ethnic origins. Immunochemically, total deficiency (type I), partial deficiency (type II), and deficiency due to a dysfunctional molecule (type III) can be differentiated. It is therefore most likely that the causative molecular defects will show considerable genetic heterogeneity. Analysis of the properdin locus at Xp11.3-Xp11.23 has led to the characterization of two polymorphic (dC-dA)n.(dG-dT)n repeats located approximately 15 kb downstream from the structural gene. Three families (two Scottish Caucasoid, one Tunisian Sephardic) with seven deficient individuals were investigated immunochemically and using a nonradioisotopic polymerase chain reaction-based method for microsatellite detection. Probable and definite carriers frequently showed properdin levels which were in the normal range. No recombinants between the microsatellite loci and properdin deficiency were detected, thus allowing identification of the defective allele through the generations in all three pedigrees. Haplotyping for these highly polymorphic microsatellites in close physical linkage to the properdin gene can provide rapid and nonradioactive detection of carrier status and prenatal diagnosis without extensive sequencing analysis.
    Full-text · Article · Feb 1993 · Journal of Clinical Investigation
Show more