Conference Paper

Multi-mode Narrow-band Thresholding with Application in Liver Segmentation from Low-contrast CT Images

Coll. of Inf. Sci. & Eng., Ritsumeikan Univ., Kusatsu, Japan
DOI: 10.1109/IIH-MSP.2009.78 Conference: Intelligent Information Hiding and Multimedia Signal Processing, 2009. IIH-MSP '09. Fifth International Conference on
Source: IEEE Xplore


Segmentation of liver in CT images is regarded as a challenge in image processing due to low-contrast of datasets, variety of liver shape, and its non-uniform texture; especially for abnormal cases. In this paper, we deal with normal and abnormal datasets as images containing two or more Gaussian components. We threshold a slice in a narrow band of each mode, find liver pixels based on a priori knowledge, prepare a probability map, and threshold the map to find initial liver border. Final boundary of liver is obtained through a few iterations of `Geodesic Active Contour'. The proposed method was tested on 30 normal and 17 abnormal datasets each containing 159-263 slices; acquired from different CT machines. The results for normal and abnormal datasets are completely acceptable, according to the evaluation done by a specialist. However, for severely abnormal datasets, the proposed method is regarded as a promising algorithm for liver segmentation.

Download full-text


Available from: Yoshinobu Sato, Jan 09, 2014
  • Source
    • "> [9] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently a growing interest has been seen in minimally invasive treatments with open configuration magnetic resonance (Open-MR) scanners. Because of the lower magnetic field (0.5T), the contrast of Open-MR images is very low. In this paper, we address the problem of liver segmentation from low-contrast Open-MR images. The proposed segmentation method consists of two steps. In the first step, we use K-means clustering and a priori knowledge to find and identify liver and non-liver index pixels, which are used as “object” and “background” seeds, respectively, for graph-cut. In the second step, a graph-cut based method is used to segment the liver from the low-contrast Open MR images. The main contribution of this paper is that the object (liver) and background (non-liver) seeds (regions) in every low-contrast slice of the volume can be obtained automatically by K-means clustering without user interaction.
    Preview · Conference Paper · Jun 2010
  • [Show abstract] [Hide abstract]
    ABSTRACT: In clinical routine of liver surgery there are a multitude of risks such as vessel injuries, blood loss, incomplete tumor resection, etc. In order to avoid these risks the surgeons perform a planning of a surgical intervention. A good graphical representation of the liver and its inner structures is of great importance for a good planning. In this work we introduce a new planning system for liver surgery, which is meant for computer tomography (CT) data analysis and graphical representation. The system is based on automatic and semiautomatic segmentation techniques as well as on a simple and intuitive user interface and was developed with the intention to help surgeons by planning an operation and increasing the efficiency in open liver surgery.
    No preview · Article · Aug 2010 · Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
  • [Show abstract] [Hide abstract]
    ABSTRACT: Successful liver surgery requires a clear understanding of the differences in liver shapes and vessel distribution in different individuals. Furthermore, in clinical medicine, there is a high demand for surgical assistance systems for individual patients. Therefore, we aim to segment the liver on the basis of the CT volume data, semi-automatically extract the vessels from the segmented livers and then visualize the 3D shape and the extracted vessel distribution using a virtual operation system. In addition, to improve the operability and accuracy of information recognition in the virtual operation system, prior knowledge and the clinical experiences of doctors are integrated into the visualization system for a practical virtual surgery. A 3D visualization of the liver, allows the user to easily recognize abnormal regions, which need to be removed, and to simply select this region using a 3D pointing device. Furthermore, 3D visualization, allows details in the structure of the human liver to be better understood and a more practical surgical simulation system can be implemented in our developed system.
    No preview · Conference Paper · Jan 2011
Show more