The CDK4/6 Inhibitor PD0332991 Reverses Epithelial Dysplasia Associated with Abnormal Activation of the Cyclin-CDK-Rb Pathway

Department of Oncology, Georgetown University, Washington, DC 20057, USA.
Cancer Prevention Research (Impact Factor: 4.44). 04/2012; 5(6):810-21. DOI: 10.1158/1940-6207.CAPR-11-0532-T
Source: PubMed


Loss of normal growth control is a hallmark of cancer progression. Therefore, understanding the early mechanisms of normal growth regulation and the changes that occur during preneoplasia may provide insights of both diagnostic and therapeutic importance. Models of dysplasia that help elucidate the mechanisms responsible for disease progression are useful in highlighting potential targets for prevention. An important strategy in cancer prevention treatment programs is to reduce hyperplasia and dysplasia. This study identified abnormal upregulation of cell cycle-related proteins cyclin D1, cyclin-dependent kinase (CDK)4, CDK6, and phosphorylated retinoblastoma protein (pRb) as mechanisms responsible for maintenance of hyperplasia and dysplasia following downregulation of the initiating viral oncoprotein Simian virus 40 (SV40) T antigen. Significantly, p53 was not required for successful reversal of hyperplasia and dysplasia. Ligand-induced activation of retinoid X receptor and PPARγ agonists attenuated cyclin D1 and CDK6 but not CDK4 or phosphorylated pRb upregulation with limited reversal of hyperplasia and dysplasia. PD0332991, an orally available CDK4/6 inhibitor, was able to prevent upregulation of cyclin D1 and CDK6 as well as CDK4 and phosphorylated pRb and this correlated with a more profound reversal of hyperplasia and dysplasia. In summary, the study distinguished CDK4 and phosphorylated pRb as targets for chemoprevention regimens targeting reversal of hyperplasia and dysplasia.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a medical sense, biomodulation could be considered a biochemical or cellular response to a disease or therapeutic stimulus. In cancer pathophysiology, the initial oncogenic stimulus leads to cellular and biochemical changes that allow cells, tissue, and organism to accommodate and accept the oncogenic insult. In epithelial cell cancer development, the process of carcinogenesis is frequently characterized by sequential cellular and biochemical adaptations as cells transition through hyperplasia, dysplasia, atypical dysplasia, carcinoma in situ, and invasive cancer. In some cases, the adaptations may persist after the initial oncogenic stimulus is gone in a type of "hit-and-run" oncogenesis. These pathophysiological changes may interfere with cancer prevention therapies targeted solely to the initial oncogenic insult, perhaps contributing to resistance development. Characterization of these accommodating adaptations could provide insight for the development of cancer preventive regimens that might more effectively biomodulate preneoplastic cells toward a more normal state.
    Full-text · Article · Oct 2012 · Annals of the New York Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have anticancer activity and influence cell differentiation. We examined the impact of the selective PPARγ agonist efatutazone on mammary cancer pathogenesis in a mouse model of BRCA1 mutation. Mice with conditional loss of full-length BRCA1 targeted to mammary epithelial cells in association with germline TP53 insufficiency were treated with efatutazone through the diet starting at age 4 months and were euthanized at age 12 months or when palpable tumor reached 1 cm(3). Although treatment did not reduce percentage of mice developing invasive cancer, it significantly reduced prevalence of noninvasive cancer and total number of cancers per mouse and increased prevalence of well-differentiated cancer subtypes not usually seen in this mouse model. Invasive cancers from controls were uniformly estrogen receptor α negative and undifferentiated, whereas well-differentiated estrogen receptor α-positive papillary invasive cancers appeared in efatutazone-treated mice. Expression levels of phosphorylated AKT and CDK6 were significantly reduced in the cancers developing in efatutazone-treated mice. Efatutazone treatment reduced rates of mammary epithelial cell proliferation and development of hyperplastic alveolar nodules and increased expression levels of the PPARγ target genes Adfp, Fabp4, and Pdhk4 in preneoplastic mammary tissue. Intervention efatutazone treatment in mice with BRCA1 deficiency altered mammary cancer development by promoting development of differentiated invasive cancer and reducing prevalence of noninvasive cancer and preneoplastic disease.
    Full-text · Article · May 2013 · American Journal Of Pathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6)-retinoblastoma (Rb) pathway, governing the cell cycle restriction point, is frequently altered in breast cancer and is a potentially relevant target for anticancer therapy. Palbociclib (PD 0332991) , a potent and selective inhibitor of CDK4 and CDK6, inhibits proliferation of several Rb-positive cancer cell lines and xenograft models. Areas covered: The basic features and abnormalities of the cell cycle in breast cancer are described, along with their involvement in estrogen signaling and endocrine resistance. The pharmacological features of palbociclib, its activity in preclinical models of breast cancer and the potential determinants of response are then illustrated, and its clinical development in breast cancer described. A literature search on the topic was conducted through PubMed and the proceedings of the main cancer congresses of recent years. Expert opinion: The combination of palbociclib with endocrine agents is a very promising treatment and Phase III clinical trials are ongoing to confirm its efficacy. Further, potentially useful combinations are those with drugs targeting mitogenic signaling pathways, such as HER2- and PI3K-inhibitors. Combination with chemotherapy seems more problematic, as antagonism has been reported in preclinical models. The identification of predictive factors, already explored in preclinical studies, must be further refined and validated in clinical trials.
    No preview · Article · Dec 2013 · Expert Opinion on Pharmacotherapy