Chemical surface modification of poly-ε-caprolactone improves Schwann cell proliferation for peripheral nerve repair

Materials Science Centre, Department of Engineering and Physical Sciences, The University of Manchester, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Journal of Tissue Engineering and Regenerative Medicine (Impact Factor: 5.2). 02/2014; 8(2). DOI: 10.1002/term.1509
Source: PubMed


Poly-ε-caprolactone (PCL) is a biodegradable and biocompatible polymer used in tissue engineering for various clinical applications. Schwann cells (SCs) play an important role in nerve regeneration and repair. SCs attach and proliferate on PCL films but cellular responses are weak due to the hydrophobicity and neutrality of PCL. In this study, PCL films were hydrolysed and aminolysed to modify the surface with different functional groups and improve hydrophilicity. Hydrolysed films showed a significant increase in hydrophilicity while maintaining surface topography. A significant decrease in mechanical properties was also observed in the case of aminolysis. In vitro tests with Schwann cells (SCs) were performed to assess film biocompatibility. A short-time experiment showed improved cell attachment on modified films, in particular when amino groups were present on the material surface. Cell proliferation significantly increased when both treatments were performed, indicating that surface treatments are necessary for SC response. It was also demonstrated that cell morphology was influenced by physico-chemical surface properties. PCL can be used to make artificial conduits and chemical modification of the inner lumen improves biocompatibility Copyright © 2012 John Wiley & Sons, Ltd.

16 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ester-containing polymers, in particular polyesters, are widely used as biomedical materials due to their industrial availability and, in many cases, degradability. However, the commercially available polyesters are usually absent of bioactive sites or motifs to meet the requirements of some specific biomedical uses, especially in the field of tissue engineering and regenerative medicine. Aminolysis is a convenient and versatile method to introduce –NH2 or other functional groups onto the polyester surface. Functional moieties can then be conjugated to or grafted from these active sites. Numerous studies have managed to fabricate a series of functional surfaces on various types and forms of polyesters. They are capable of improving cell adhesion, proliferation and cellular functions, domination of stem cell differentiation and isolation of certain subgroup of cells, demonstrating the versatility of the aminolysis-based polyester surface modification in biomedical applications. The mechanism and kinetics of aminolysis reaction, as well as its subsequent influence on materials properties are discussed in this review. The successive functionalization strategies and derivative applications of the aminolyzed surfaces are introduced. Finally, the review concludes with current challenges and future perspectives.
    No preview · Article · Jan 2013 · RSC Advances
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-material interactions are crucial for cell adhesion and proliferation on biomaterial surfaces. Immobilization of biomolecules leads to the formation of biomimetic substrates, improving cell response. We introduced RGD (Arg-Gly-Asp) sequences on poly-ε-caprolactone (PCL) film surfaces using thiol chemistry to enhance Schwann cell (SC) response. XPS elemental analysis indicated an estimate of 2-3% peptide functionalization on the PCL surface, comparable with carbodiimide chemistry. Contact angle was not remarkably reduced; hence, cell response was only affected by chemical cues on the film surface. Adhesion and proliferation of Schwann cells were enhanced after PCL modification. Particularly, RGD immobilization increased cell attachment up to 40% after 6 h of culture. It was demonstrated that SC morphology changed from round to very elongated shape when surface modification was carried out, with an increase in the length of cellular processes up to 50% after 5 days of culture. Finally RGD immobilization triggered the formation of focal adhesion related to higher cell spreading. In summary, this study provides a method for immobilization of biomolecules on PCL films to be used in peripheral nerve repair, as demonstrated by the enhanced response of Schwann cells. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2012.
    No preview · Article · Feb 2013 · Journal of Biomedical Materials Research Part A
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gold standard in surgical management of a peripheral nerve gap is currently autologous nerve grafting. This confers patient morbidity and increases surgical time therefore innovative experimental strategies towards engineering a synthetic nerve conduit are welcome. We have developed a novel synthetic conduit made of poly ɛ-caprolactone (PCL) that has demonstrated promising peripheral nerve regeneration in short-term studies. This material has been engineered to permit translation into clinical practice and here we demonstrate that histological outcomes in a long-term in vivo experiment are comparable with that of autologous nerve grafting. A 1cm nerve gap in a rat sciatic nerve injury model was repaired with a PCL nerve conduit or an autologous nerve graft. At 18 weeks post surgical repair, there was a similar volume of regenerating axons within the nerve autograft and PCL conduit repair groups, and similar numbers of myelinated axons in the distal stump of both groups. Furthermore, there was evidence of comparable re-innervation of end organ muscle and skin with the only significant difference the lower wet weight of the muscle from the PCL conduit nerve repair group. This study stimulates further work on the potential use of this synthetic biodegradable PCL nerve conduit in a clinical setting.
    No preview · Article · Apr 2013 · Neuroscience Letters
Show more