DEP induction of ROS in capillary-like endothelial tubes leads to VEGF-A expression

Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA.
Toxicology (Impact Factor: 3.62). 04/2012; 297(1-3):34-46. DOI: 10.1016/j.tox.2012.03.009
Source: PubMed


Inhalation of diesel exhaust particles (DEPs) is associated with pulmonary and cardiovascular disease. One contributor to pathogenesis is inhaled particles reaching and injuring the lung capillary endothelial cells, and possibly gaining access to the blood stream. Using in vitro capillary tubes as a simplified vascular model system for this process, it was previously shown that DEPs induce the redistribution of vascular endothelial cell-cadherin (VE-Cad) away from the plasma membrane to intracellular locations. This allowed DEPs into the cell cytoplasm and tube lumen, suggesting the tubes may have become permeable (Chao et al., 2011). Here some of the mechanisms responsible for endothelial tube changes after DEP exposure were examined. The results demonstrate that endothelial tube cells mounted an oxidative stress response to DEP exposure. Hydrogen peroxide and oxidized proteins were detected after 24h of exposure to DEPs. Particles induced relocalization of Nrf2 from the cytoplasm to the nucleus, upregulating the expression of the enzyme heme oxygenase-1 (HO-1). Surprisingly, vascular endothelial cell growth factor-A (VEGF-A), initially termed "vascular permeability factor" (VPF), was found to be up-regulated in response to the HO-1 expression induced by DEPs. Similar to DEPs, applied VEGF-A induced relocalization of VE-Cadherin from the cell membrane surface to an intracellular location, and relocalization of VE-cadherin was associated with permeability. These data suggest that the DEPs may induce or contribute to the permeability of capillary-like endothelial tube cells via induction of HO-1 and VEGF-A.

Download full-text


Available from: Ming-Wei Chao, Oct 22, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles (NPs) are tiny particles with a diameter of less than 100 nm. Traffic exhaust is a major source of combustion-derived NPs (CDNPs), which represent a significant component in urban air pollution. Epidemiological, panel and controlled human chamber studies clearly demonstrate that exposure to CDNPs is associated with multiple adverse cardiovascular effects in both healthy individuals and those with pre-existing cardiovascular disease. NPs are also manufactured from a large range of materials for industrial use in a vast array of products including for use as novel imaging agents for medical use. There is currently little information available on the impacts of manufactured NPs in humans, but experimental studies demonstrate similarities to the detrimental cardiovascular actions of CDNPs. This review describes the evidence for these cardiovascular effects and attempts to resolve the paradox between the adverse effects of the unintentional exposure of CDNPs and the intentional delivery of manufactured NPs for medical purposes.
    Full-text · Article · Mar 2013 · Nanomedicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibitory action and the possible mechanism of anticancer compound Sanguinarine (SAN) on vascular endothelial growth factor (VEGF) in human mammary adenocarcinoma cells MCF-7 were evaluated in this study. We exposed MCF-7 to SAN for 24 h, then cell viability was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Human VEGF was measured using a paired antibody quantitative ELISA kit, relative expression of VEGF mRNA was calculated using the real-time PCR studies, and the effect of SAN on the reactive oxygen species (ROS) level was detected by the flow cytometer. Treatment with SAN remarkably inhibited growth of MCF-7 cells and induced cell apoptosis. We found that VEGF release was stimulated by subtoxic concentrations of SAN and inhibited by high dose of SAN, SAN-evoked VEGF release was mimicked by low concentration of H2O2, and SAN-regulated VEGF inhibition was accompanied by increasing of ROS; these changes were abolished by antioxidant. High concentration of SAN inhibited VEGF mRNA expression in MCF-7 cultures, suggesting an effect at transcriptional level, and was also abolished by antioxidant. The present findings indicated that the regulation of VEGF expression and release from MCF-7 cells were possibly through reactive oxygen species evoked by SAN.
    Full-text · Article · May 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300μg/ml) for 24h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media.
    Full-text · Article · Aug 2013 · International journal of pediatric otorhinolaryngology
Show more