Critical review of near-infrared spectroscopic methods validations in pharmaceutical applications

Laboratory of Analytical Chemistry, CIRM, University of Liège, 1 Avenue de l'Hôpital, 4000 Liège, Belgium.
Journal of pharmaceutical and biomedical analysis (Impact Factor: 2.98). 03/2012; 69:125-32. DOI: 10.1016/j.jpba.2012.02.003
Source: PubMed


Based on the large number of publications reported over the past five years, near-infrared spectroscopy (NIRS) is more and more considered an attractive and promising analytical tool regarding Process Analytical Technology and Green Chemistry. From the reviewed literature, few of these publications present a thoroughly validated NIRS method even if some guidelines have been published by different groups and regulatory authorities. However, as any analytical method, the validation of NIRS method is a mandatory step at the end of the development in order to give enough guarantees that each of the future results during routine use will be close enough to the true value. Besides the introduction of PAT concepts in the revised document of the European Pharmacopoeia (2.2.40) dealing with near-infrared spectroscopy recently published in Pharmeuropa, it agrees very well with this mandatory step. Indeed, the latter suggests to use similar analytical performance characteristics than those required for any analytical procedure based on acceptance criteria consistent with the intended use of the method. In this context, this review gives a comprehensive and critical overview of the methodologies applied to assess the validity of quantitative NIRS methods used in pharmaceutical applications.

Download full-text


Available from: Eric M Ziemons
  • Source
    • "The validation based on traditional chemometric parameters such as í µí±… and RMSEP is insufficient towards pharmaceutical regulatory requirements [35]. The s2i20PLS model was also validated in accordance with the International Conference on Harmonisation (ICH) [36] using parameters usually recommended: precision (repetitively and intermediate precision), linearity, and accu- racy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE) and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). The treatments based on the mean centered data and multiplicative scatter correction (MSC) were selected for models construction. A root mean square error of prediction (RMSEP) of 8.2 mg g−1 was achieved using siPLS (s2i20PLS) algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm−1). Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.
    Full-text · Article · Apr 2015 · Journal of Analytical Methods in Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this manuscript was to show the basic concepts and practical application of Partial Least Squares (PLS) as a tutorial, using the Matlab computing environment for beginners, undergraduate and graduate students. As a practical example, the determination of the drug paracetamol in commercial tablets using Near-Infrared (NIR) spectroscopy and Partial Least Squares (PLS) regression was shown, an experiment that has been successfully carried out at the Chemical Institute of Campinas State University for chemistry undergraduate course students to introduce the basic concepts of multivariate calibration in a practical way.
    Full-text · Article · Dec 2012 · Química Nova
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the development, validation and application of NIR-chemometric methods for API content and pharmaceutical characterization (disintegration time and crushing strength) of indapamide intact tablets. Development of the method for chemical characterization was performed on samples corresponding to 80, 90, 100, 110 and 120% of indapamide content and for pharmaceutical characterization on samples prepared at nine different compression forces (covering the interval 7-45kN). NIR spectra of prepared tablets were recorded in transmission mode, and partial least-squares followed by leave-one-out cross-validation were used to develop models for the prediction of the drug content and the pharmaceutical properties of tablets. All developed models were validated in terms of trueness, precision and accuracy. No statistical differences were found between results predicted by NIR-chemometric methods and the ones determined by reference methods. Therefore, the developed NIR-chemometric methods meet the requirements of a high-throughput method for the determination of drug content, pharmaceutical properties of indapamide tablets.
    No preview · Article · Dec 2012 · Journal of pharmaceutical and biomedical analysis
Show more