ArticlePDF Available

Global Warming Preceded by Increasing Carbon Dioxide Concentrations during the Last Deglaciation

Authors:

Abstract and Figures

The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.
Content may be subject to copyright.
ARTICLE doi:10.1038/nature10915
Global warming preceded by increasing
carbon dioxide concentrations during the
last deglaciation
Jeremy D. Shakun
1,2
, Peter U. Clark
3
, Feng He
4
, Shaun A. Marcott
3
, Alan C. Mix
3
, Zhengyu Liu
4,5,6
, Bette Otto-Bliesner
7
,
Andreas Schmittner
3
& Edouard Bard
8
The covariation of carbon dioxide (CO
2
) concentration and temperature in Antarctic ice-core records suggests a close
link between CO
2
and climate during the Pleistocene ice ages. The role and relative importance of CO
2
in producing these
climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than
global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that
temperature is correlated with and generally lags CO
2
during the last (that is, the most recent) deglaciation. Differences
between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations
in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations,
together with transient global climate model simulations, support the conclusion that an antiphased hemispheric
temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing
CO
2
concentrations is an explanation for much of the temperature change at the end of the most recent ice age.
Understanding the causes of the Pleistocene ice ages has been a sig-
nificant question in climate dynamics since they were discovered in
the mid-nineteenth century. The identification of orbital frequencies
in the marine
18
O/
16
O record, a proxy for global ice volume, in the
1970s demonstrated that glacial cycles are ultimately paced by astro-
nomical forcing
1
. Initial measurements of air bubbles in Antarctic ice
cores in the 1980s revealed that greenhouse gas concentrations also
increased and decreased over the last glacial cycle
2,3
, suggesting they
too may be part of the explanation. The ice-core record now extends
back 800,000 yr and shows that local Antarctic temperature was
strongly correlated with and seems to have slightly led changes in
CO
2
concentration
4
. The implication of this relationship for under-
standing the role of CO
2
in glacial cycles, however, remains unclear.
For instance, proxy data have variously been interpreted to suggest
that CO
2
was the primary driver of the ice ages
5
, a more modest
feedback on warming
6,7
or, perhaps, largely a consequence rather than
cause of past climate change
8
. Similarly, although climate models
generally require greenhouse gases to explain globalization of the
ice-age signal, they predict a wide range (one-third to two-thirds) in
the contribution of greenhouse gases to ice-age cooling, with addi-
tional contributions from ice albedo and other effects
9,10
. Moreover,
models have generally used prescribed forcings to simulate snapshots
in time and thus by design do not distinguish the timing of changes in
various forcings relative to responses.
Global temperature reconstructions and transient model simula-
tions spanning the past century and millennium have been essential to
the attribution of recent climate change, and a similar strategy would
probably improve our understanding of glacial cycle dynamics. Here
we use a network of proxy temperature records that provide broad
spatial coverage to show that global temperature closely tracked the
increase in CO
2
concentration over the last deglaciation, and that
variations in the Atlantic meridional overturning circulation
(AMOC) caused a seesawing of heat between the hemispheres,
supporting an early hypothesis that identified potentially important
roles for these mechanisms
11
. These findings, supported by transient
simulations with a coupled ocean–atmosphere general circulation
model, can explain the lag of CO
2
behind Antarctic temperature in
the ice-core record and are consistent with an important role for CO
2
in driving global climate change over glacial cycles.
Global temperature
We calculate the area-weighted mean of 80 globally distributed, high-
resolution proxy temperature records to reconstruct global surface
temperature during the last deglaciation (Methods and Fig. 1). The
global temperature stack shows a two-step rise, with most warming
occurring during and right after the Oldest Dryas and Younger Dryas
intervals and relatively little temperature change during the Last
Glacial Maximum (LGM), the Bølling–Allerød interval and the early
Holocene epoch (Fig. 2a). The atmospheric CO
2
record from the
EPICA Dome C ice core
12
, which has recently been placed on a more
accurate timescale
13
, has a similar two-step structure and is strongly
correlated with the temperature stack (r
2
50.94 (coefficient of deter-
mination), P50.03; Fig. 2a).
Lag correlations quantify the timing of change in the temperature
stack relative to CO
2
from 20–10 kyr ago, an interval that spans the
period during which low LGM CO
2
concentrations increased to
almost pre-industrial values. Our results indicate that CO
2
probably
leads global warming over the course of the deglaciation (Fig. 2b). A
comparison of the global temperature stack with Antarctic temper-
ature provides further support for this relative timing, in showing that
1
Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
2
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA.
3
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA.
4
Center for Climatic Research, University of Wisconsin, Madison, Wisconsin 53706, USA.
5
Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
6
Laboratory for Ocean-Atmosphere Studies, Peking University, Beijing 100871, China.
7
Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado 80307-3000, USA.
8
CEREGE, Colle
`ge de France, CNRS-Universite
´Aix-Marseille, Europole de l’Arbois,
13545 Aix-en-Provence, France.
5APRIL2012|VOL484|NATURE|49
Macmillan Publishers Limited. All rights reserved
©2012
although the structure of the global stack is similar to the pattern of
Antarctic temperature change, it lags Antarctica by several centuries
to a millennium throughout most of the deglaciation (Fig. 2a). Thus,
the small apparent lead of Antarctic temperature over CO
2
in the ice-
core records
12,14
does not apply to global temperature. An additional
evaluation of this result comes from an objective identification of
inflection points in the CO
2
and global temperature records, which
suggests that changes in CO
2
concentration were either synchronous
with or led global warming during the various steps of the deglaciation
(Supplementary Table 2). An important exception is the onset of
deglaciation, which features about 0.3 uC of global warming before
the initial increase in CO
2
,17.5 kyr ago. This finding suggests that
CO
2
was not the cause of initial warming. We return to this point
below. Nevertheless, the overall correlation and phasing of global
temperature and CO
2
are consistent with CO
2
being an important
driver of global warming during the deglaciation, with the centennial-
scale lag of temperature behind CO
2
being consistent with the thermal
inertia of the climate system owing to ocean heat uptake and ice
melting
15
.
Although other mechanisms contributed to climate change during
the ice ages, climate models suggest that their impacts were regional
and thus cannot explain the global extent of temperature changes
documented by our stacked record alone
9,16,17
. This conclusion is sup-
ported by the distinct differences, relative to the temperature stack, in
the temporal variabilities of other likely climate change agents (Fig. 3).
For example, insolation is a smoothly varying sinusoid that is in
antiphase between the hemispheres and sums to near zero globally at
the top of the atmosphere (Fig. 3f). Although spatial and temporal
asymmetries in albedo could convert insolation to a non-zero forcing
at Earth’s surface, it is unlikely to account for much of the step-like
structure and global nature of the temperature stack.
Similarly, although ice-sheet extent and its associated albedo (from
ice cover and emergent continental shelves) and orographic forcing
decreased through the deglaciation,global ice volume and area changed
only slowly or not at all duringintervals of pronounced global warming
such as the Oldest Dryas and Younger Dryas, and the greatest volume
or area loss in fact occurred during intervals of little or no warming
around 19 kyr ago and the Bølling–Allerød (Fig. 3a, b). This distinction
is particularly notable during the early Holocene, when the temperature
stack had reached interglacial levels while nearlyone-third of the excess
global ice still remained, although we note that any ice-driven warming
would have been partly offset by decreasing greenhouse gas forcing
(Fig. 3c and Supplementary Fig. 29a). The apparently small influence
of ice-sheet forcing on the temperature stack is consistent with general
circulation models that suggest its effect was largely confined to the
northern mid to high latitudes and was otherwise modest in the areas
sampled by our proxy network
16–18
, which is biased away from the ice
sheets. Our results, therefore, do not preclude an important contri-
bution to global mean warming from ice-sheet retreat, but suggest that
much of this warming was spatially restricted and may be inherently
under-represented owing to the lack of suitable palaeotemperature
records from and proximal to areas formerly covered by ice.
90° N
90° S
180°
120° W
60° W
60° E
120° E
180°
60° N
60° S
30° N
30° S
a b
90° N
60° N
30° N
30° S
60° S
90° S
Latitude
048
No. records
00.05
Fraction of
planet area
Mg/Ca
U
37
k
Ice core
TEX
86
Microfossils
Pollen
MBT/CBT
Longitude
Latitude
Figure 1
|
Proxy temperature records. a, Location map. CBT, cyclization
ratio of branched tetraethers; MBT, methylation index of branched tetraethers;
TEX
86
, tetraether index of tetraethers consisting of 86 carbon atoms;
Uk0
37, alkenone unsaturation index. b, Distribution of the records by latitude
(grey histogram) and areal fraction of the planet in 5usteps (blue line).
22 20 18 16 14 12 10 8
Age (kyr)
–4
–3
–2
–1
0
Proxy global temperature (°C)
–1
0
1
Antarctic composite (σ)
180
200
220
240
260
CO2 (p.p.m.v.)
HoloceneYDB–AOD
LGM
–2,000 –1,500 –1,000 –500 0 500 1,000 1,500 2,000
Lag (yr)
0
50
100
150
Count
Temperature leads CO2
SH
–620 ± 660 NH
720 ± 330
Global
460 ± 340
Temperature lags CO2
a
b
Figure 2
|
CO
2
concentration and temperature. a, The global proxy
temperature stack (blue) as deviations from the early Holocene (11.5–6.5 kyr
ago) mean, an Antarctic ice-core composite temperature record
42
(red), and
atmospheric CO
2
concentration (refs 12, 13; yellow dots). The Holocene,
Younger Dryas (YD), lling–Allerød (B–A), Oldest Dryas (OD) and Last
Glacial Maximum (LGM) intervals are indicated. Error bars, 1s(Methods);
p.p.m.v., parts per million by volume. b, The phasing of CO
2
concentration and
temperature for the global (grey), Northern Hemisphere (NH; blue) and
Southern Hemisphere (SH; red) proxy stacks based on lag correlations from
20–10 kyr ago in 1,000 Monte Carlo simulations (Methods). The mean and 1s
of the histograms are given. CO
2
concentration leads the global temperature
stack in 90% of the simulations and lags it in 6%.
RESEARCH ARTICLE
50 | NATURE | VOL 484 | 5 APRIL 2012
Macmillan Publishers Limited. All rights reserved
©2012
Unlike these regional-scale forcings, methane, nitrous oxide and
possibly dust are global in nature. Because greenhouse gas forcing
was dominated by CO
2
(ref. 19; Supplementary Fig. 29a), and because
at the onsets of the Bølling–Allerød, Younger Dryas and Holocene the
methane and nitrous oxide records havesmall step changes like those of
the global temperature stack, including these greenhouse gases leaves
the correlation with the stack essentially unchanged (r
2
50.93) and
slightly decreases the temperature lag (250 6340 yr) (Supplementary
Fig. 29). Global dust forcing is poorly constrained
19
,however,andwe
cannot dismissit as a potentially important driverof global temperature
independent of greenhouse warming. Vegetation forcing is likewise
difficult to assess
19
and may have significantly contributed to global
warming. These uncertainties notwithstanding, we suggest that the
increase in CO
2
concentration before that of global temperature is
consistent with CO
2
acting as a primary driver of global warming,
although itscontinuing increase is presumably a feedback fromchanges
in other aspects of the climate system.
The global temperature lag behind CO
2
identified here relies
critically on the chronological accuracy of these records. The largest
uncertainty in the proxy age models is associated with radiocarbon
reservoir corrections, which affect marine, but generally not terrestrial,
records. A recent synthesis found similar temperature variabilities in
land and ocean proxy records during the last deglaciation, but that the
timing may be slightly earlier in the marine records
20
(Supplementary
Fig. 4). Likewise, the pattern of temperature changes at upwelling sites,
where reservoir ages may be more variable, is similar to that at non-
upwellingsites but again seems somewhatolder (Supplementary Fig. 4).
These relationships imply that marine reservoir corrections may have
been underestimated, which would shift the temperature stack to
later times in some intervals and increase its average lag relative to
CO
2
. We also evaluated the EPICA Dome C CO
2
chronology
13
by
comparing the Dome C methane record on this timescale with the
more precisely dated Greenland composite methane record on the
GICC05 timescale
21
. This comparison suggests that the EPICA
Dome C CO
2
age model may be one to two centuries too young during
parts of the deglaciation (Supplementary Fig. 7), which would further
increase the lead of CO
2
over global temperature. We thus regard the
lag of global temperature behind CO
2
reported here as conservative.
Hemispheric temperatures
The lead of Antarctic temperature over global temperature indicates
spatial variability in the pattern of deglacial warming. To examine this
spatial variability further, we calculated separate temperature stacks
for the Northern Hemisphere and Southern Hemisphere and found
that the magnitude of deglacial warming in the two hemispheric
stacks is nearly identical (Fig. 4b). Given that greater LGM cooling
probably occurred in the areas affected by the Northern Hemisphere
ice sheets
9,17
, this result provides additional support for our inference
that the proxy network under-represents the regional impact of the ice
sheets. Each hemispheric stack also shows a two-step warming as seen
in the global stack and the CO
2
record (Fig. 4a). Otherwise, the hemi-
spheric stacks differ in two main ways. First, lag correlations suggest
that whereas Southern Hemisphere temperature probably leads CO
2
,
consistent with the Antarctic ice-core results
12
, Northern Hemisphere
temperature lags CO
2
(Fig. 2b). Second, the Northern Hemisphere
shows modest coolings coincident with the onset of Southern
Hemisphere warmings, and the warming steps are concave-up in
the north but are concave-down in the south (Fig. 4b).
Calculating the temperature difference, DT, between the two hemi-
spheric stacks yields an estimate of the heat distribution between the
hemispheres, and reveals two large millennial-scale oscillations that
are one-quarter to one-third of the glacial–interglacial range in global
temperature (Fig. 4d). We attribute the variability in DTto variations
in the strength of the AMOC and its attendant effects on cross-
equatorial heat transport
22,23
. A strong correlation of DTwith a kinematic
proxy (Pa/Th, the protactinium/thorium ratio) for the strength of the
AMOC
24
(r
2
50.79, P50.03) supports this interpretation (Fig. 4g).
We find that DTdecreases during the Oldest Dryas and Younger Dryas
intervals, when the Pa/Th record suggests that the AMOC is weak and
heat transfer between the hemispheres is reduced, and that DT
increases during the LGM, the Bølling–Allerød and the Holocene,
when the AMOC is stronger and transports heat from the south to
the north. Recalculating DTfor Atlantic-only records yields the same
relations, but they are more pronounced and better correlated with
Pa/Th (r
2
50.86, P50.01), as would be expected given the importance
of the AMOC in this ocean (Fig. 4d). We note that this seesawing of
heat between the hemispheres explains the contrast between thelead of
Antarctic temperature over CO
2
and the lag of global (and Northern
Hemisphere) temperature behind CO
2
.
Transient modelling
We evaluate potential physical explanations for the correlations between
temperature, CO
2
concentration and AMOC variability in three tran-
sient simulations of the last deglaciation using the Community Climate
System Model version 3 (CCSM3; ref. 25)ofthe US National Center for
Atmospheric Research. The first simulation (ALL) runs from 22 to
6.5 kyr ago and is driven by changes in greenhouse gases, insolation,
ice sheets and freshwater fluxes (the last of which is adjusted iteratively
810121416182022
A
g
e
(
k
y
r
)
–3
–2
–1
0
Proxy global temperature (°C)
180
200
220
240
260
CO2 (p.p.m.v.)
100
80
60
40
20
0
NH ice-sheet area (%)
–120
–80
–40
0
Relative sea level (m)
–5
0
5
10
Insolation (% relative to present)
–3
–2
–1
0
Model global temperature (°C)
65° N June 21
65° S Dec. 21
Global annual
a
b
c
d
e
HoloceneYDB–AOD
LGM
f
Figure 3
|
Global temperature and climate forcings. a, Relative sea level
26
(diamonds). b, Northern Hemisphere ice-sheet area (line) derived from
summing the extents of the Laurentide
43
, Cordilleran
43
and Scandinavian (R.
Gyllencreutz and J. Mangerud, personal communication) ice sheets through
time. c, Atmospheric CO
2
concentration. d, Global proxy temperature stack.
e, Modelled global temperature stacks from the ALL (blue), CO2 (red) and ORB
(green) simulations. Dashed lines show global mean temperatures in the
simulations, using sea surface temperatures over ocean and surface air
temperatures over land. f, Insolation forcing for latitudes 65uN (purple) and
65uS (orange) at the local summer solstice, andglobal mean annual insolation
(dashed black)
44
. Error bars, 1s.
ARTICLE RESEARCH
5APRIL2012|VOL484|NATURE|51
Macmillan Publishers Limited. All rights reserved
©2012
and thus is a tunable parameter). The second simulation (CO2) is
forced only by imposed changes in greenhouse gases (CO
2
, methane
and nitrous oxide), and the third simulation (ORB) is forced only by
orbitally driven insolation variations. All other forcing factors for the
second and third simulations, which run from 17 to 7kyr ago, are held
constant at their values at 17kyr ago. All three simulations include
dynamic vegetation feedback and a fixed annual cycle of aerosol
forcing. We sample the model output at the locations of the 80 proxy
records, recording sea surface temperatures for the marine records and
surface air temperatures for the land records, and stacking these
sampled model time series just as we did the data. We also correct
sea surface temperature time series from the ALL simulation for sea-
level changes by scaling the eustatic sea-level curve
26
to a warming by
0.32 uC at the LGM lowstand
27
. To simulate uncertainties in the model
results comparable to those of the data, we generated 1,000 Monte
Carlo simulations in which the modelled time series were perturbed
with random age-model (6300yr, 1s) and temperature (61uC, 1s)
errors at each site.
The ALL model temperature stack from the 80 sites is similar to the
global mean temperature from the model (r
2
50.97), suggesting that
the proxy sites represent the globe fairly well, although the amplitude
of warming is slightly smaller in the stack (Fig. 3e and Supplementary
Fig. 12). The ALL model stack is also similar to the CO2 model stack in
shape and amplitude (r
2
50.98; Fig. 3e). Because the CO2 model
stack reflects a response to only greenhouse gas forcing, its similarity
to the ALL stack suggests that greenhouse gases can explain most of
the mean warming at these 80 sites. The ORB model stack, by contrast,
shows only minor warming, consistent with a modest role for orbital
forcing in directly driving global temperature changes.
Calculating the difference in model temperature between the
Northern Hemisphere and the Southern Hemisphere at the proxy
sites in the three simulations yields DTtime series that are strongly
correlated with variations in modelled AMOC strength in each simu-
lation (r
2
50.95 for ALL, 0.98 for CO2; Fig. 4f). Only DTfor the ALL
simulation, however, shows millennial-scale variability similar to that
seen in the proxy DTtime series and the Pa/Th record (Fig. 4d, e, g).
These results suggest that ocean circulation changes driven primarily
by freshwater flux, rather than by direct forcing from greenhouse
gases or orbits, are plausible causes of the hemispheric differences
in temperature change seen in the proxy records. Furthermore, in
the ALL simulation the Southern Hemisphere temperature stack leads
Northern Hemisphere (and global) temperature during the two degla-
cial warming steps (Fig. 4c), supporting our inference that AMOC-
driven internal heat redistributions explain the Antarctic temperature
lead and global temperature lag relative to CO
2
. Lag correlations from
20–10 kyr ago suggest that the modelled global temperature lags CO
2
concentration by 120 yr, which is within the uncertainty range of the
proxy-based lag.
The trigger for deglacial warming
The proxy database provides an opportunity to explore what triggers
deglacial warming. Substantial temperature change at all latitudes
(Fig. 5b), as well as a net global warming of about 0.3 uC (Fig. 2a),
precedes the initial increase in CO
2
concentration at 17.5 kyr ago,
suggesting that CO
2
did not initiate deglacial warming. This early
global warming occurs in two phases: a gradual increase between
21.5 and 19 kyr ago followed by a somewhat steeper increase between
19 and 17.5 kyr ago (Fig. 2a). The first increase is associated with mean
warming of the northern mid to high latitudes, most prominently in
Greenland, as there is little change occurring elsewhere at this time
(Fig. 5 and Supplementary Fig. 20). The second increase occurs during
a pronounced interhemispheric seesaw event (Fig. 5), presumably
related to a reduction in AMOC strength, as seen in the Pa/Th record
and our modelling (Fig. 4f, g). Tropical and Southern Hemisphere
warming seem to have more than offset northern extratropical cool-
ing, however, perhaps as a result of an asymmetry in the response of
feedbacks such as Southern Ocean sea ice or tropical water vapour,
leading to the global mean response. Alternatively, this non-zero-sum
response may reflect proxy biases, as tropical warming is not equally
evident in all proxies (Supplementary Fig. 20). In any event, we
suggest that these spatiotemporal patterns of temperature change
are consistent with warming at northern mid to high latitudes, leading
to a reduction in the AMOC at ,19 kyr ago, being the trigger for the
810121416182022
A
g
e (k
y
r)
–4
–3
–2
–1
0
Proxy hemispheric temperature (°C)
180
200
220
240
260
CO2 (p.p.m.v.)
–2
–1
0
1
Model ΔT (°C)
0.1
0.09
0.08
0.07
0.06
0.05
231Pa/230Th
–3
–2
–1
0
1
Proxy ΔT (°C)
0
4
8
12
16
20
Model AMOC (Sv)
–4
–3
–2
–1
0
Model hemispheric temperature (°C)
a
b
c
e
f
g
d
HoloceneYDB–AOD
LGM
Figure 4
|
Hemispheric temperatures. a, Atmospheric CO
2
concentration.
b, Northern Hemisphere (blue) and Southern Hemisphere (red) proxy
temperature stacks. c, Modelled Northern Hemisphere (blue) and Southern
Hemisphere (red) temperature stacks from the ALL simulation. d, Northern
Hemisphere minus Southern Hemisphere proxy temperature stacks (dark
purple). North Atlantic minus South Atlantic region proxy temperature stacks
(light purple). e, Modelled Northern Hemisphere minus Southern Hemisphere
temperature stacks in the ALL (blue), CO2 (red) and ORB (green) simulations.
f, Modelled AMOC strength in the ALL (blue), CO2 (red) and ORB (green)
simulations. g, North Atlantic sediment core OCE326-GGC5
231
Pa/
230
Th (ref.
24). Temperatures are given as deviations from the early Holocene (11.5
6.5 kyr ago) mean. Error bars, 1s.
RESEARCH ARTICLE
52|NATURE|VOL484|5APRIL2012
Macmillan Publishers Limited. All rights reserved
©2012
global deglacial warming that followed, although more records will be
required to confirm the extent and magnitude of early warming at
such latitudes. A possible forcing model to explain this sequence of
events starts with rising boreal summer insolation driving northern
warming
28
. This leads to the observed retreat of Northern Hemisphere
ice sheets
26
and the increase in sea level
29
commencing ,19 kyr ago
(Fig. 3a, b), with the attendant freshwater forcing causing a reduction
in the AMOC that warms the Southern Hemisphere through the
bipolar seesaw
30
.
Recent studies of the deglaciation
31,32
have shown a strong correla-
tion between times of minima in the AMOC and maxima in CO
2
release, consistent with our DTproxy for AMOC strength (Fig. 4d),
suggesting that a change in the AMOC may have also contributed to
CO
2
degassing from the deep Southern Ocean though its influence on
the extent of Southern Ocean sea ice
33
, the position of the southern
westerlies
34
or the efficiency of the biological pump
35
. Further insight
into this relationship is provided by meridional differences in the
timing of proxy temperature change following the reduction in
AMOC after ,19 kyr ago. A near-synchronous seesaw response is
seen from the high northern latitudes to the mid southern latitudes,
whereas strong Antarctic warming and the increase in CO
2
concen-
tration lag the AMOC change
36
(Figs 2a and 5b). This lag suggests that
the high-southern-latitude temperature response to an AMOC per-
turbation may involve a time constant such as that from Southern
Ocean thermal inertia
23,37
, whereas the CO
2
response requires a
threshold in AMOC reduction to displace southern winds or sea ice
sufficiently
38
or to perturb the ocean’s biological pump
35
. We also
suggest that the delay of Antarctic warming that follows the AMOC
seesaw event 19 kyr ago and occurs relative to the mid southern
latitudes over the entire deglaciation (Fig. 5b) is difficult to reconcile
with hypotheses invoking a southern high-latitude trigger for degla-
ciation
39,40
.
Our global temperature stack and transient modelling point to CO
2
as a key mechanism of global warming during the last deglaciation.
Furthermore, our results support an interhemispheric seesawing of
heat related to AMOC variability and suggest that these internal heat
redistributions explain the lead of Antarctic temperature over CO
2
while global temperature was in phase with or slightly lagged CO
2
.
Lastly, the global proxy database suggests that parts of the northern
mid to high latitudes were the first to warm after the LGM, which
could have initiated the reduction in the AMOC that may have ulti-
mately caused the increase in CO
2
concentration.
METHODS SUMMARY
The data set compiled in this study contains most published high-resolution
(median resolution, 200 yr), well-dated (n5636 radiocarbon dates) temperature
records from the last deglaciation (see Supplementary Information for the full
database). Sixty-seven records are from the ocean and are interpreted to reflect sea
surface temperatures, and the remaining 13 record air or lake temperatures on
land. All records span 18–11 kyr ago and ,85% of them span 22–6.5 kyr ago. We
recalibrated all radiocarbon dates with the IntCal04 calibration (Supplementary
Information) and converted proxy units to temperature using the reservoir cor-
rections and proxy calibrations suggested in the original publications. An excep-
tion to this was the alkenone records, which were recalibrated with a global
core-top calibration
41
. The data were projected onto a 5u35ugrid, linearly
interpolated to 100-yr resolution and combined as area-weighted averages. We
used Monte Carlo simulations to quantify pooled uncertainties in the age models
and proxy temperatures, although we do not account for analytical uncertainties
or uncertainties related to lack of global coverage and spatial bias in the data set. In
particular, the records are strongly biased towards ocean margins where high
sedimentation rates facilitate the development of high-resolution records. Given
these issues, we focus on the temporal evolution of temperature through the
deglaciation rather than on its amplitude of change. The global temperature stack
is not particularly sensitive to interpolation resolution, areal weighting, the
number of proxy records, radiocarbon calibration, infilling of missing data or
proxy type. Details on the experimental design of the transient model simulations
can be found in ref. 25. The temperature stacks and proxy data set are available in
Supplementary Information.
Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
Received 16 September 2011; accepted 1 February 2012.
1. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker
of the ice ages. Science 194, 1121–1132 (1976).
2. Delmas, R. J., Ascencio, J. M. & Legrand, M. Polar ice evidence that atmospheric
CO
2
20,000 yr BP was 50% of present. Nature 284, 155–157 (1980).
3. Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. Ice core sample
measurements give atmospheric CO
2
content during the past 40,000 yr. Nature
295, 220–223 (1982).
4. Lu
¨thi, D. et al. High-resolution carbon dioxide concentration record 650,000–
800,000 years before present. Nature 453, 379–382 (2008).
5. Shackleton, N. J. The 100,000 year ice-age cycle identified and found to lag
temperature, carbon dioxide and orbital eccentricity. Science 289, 1897–1902
(2000).
6. Imbrie, J. et al. On the structure and origin of major glaciation cycles. 2. The
100,000-year cycle. Paleoceanography 8, 699–735 (1993).
7. Alley, R. B. & Clark, P. U. The deglaciation of the northern hemisphere: a global
perspective. Annu. Rev. Earth Planet. Sci. 27, 149–182 (1999).
8. Toggweiler, J. R. & Lea, D. W. Temperature differences between the hemispheres
and ice age climate variability. Paleoceanography 25, PA2212 (2010).
9. Weaver, A. J., Eby, M., Fanning, A. F. & Wiebe, E. C. Simulated influence of carbon
dioxide, orbital forcing and ice sheetson the climate of the Last Glacial Maximum.
Nature 394, 847–853 (1998).
10. Schneider von Deimling, T., Held, H., Ganopolski, A. & Rahmstorf, S. Climate
sensitivity estimated from ensemble simulations of glacial climate. Clim. Dyn. 27,
149–163 (2006).
11. Mix, A. C.,Ruddiman, W. F. & McIntyre, A. Late Quaternary paleoceanographyof the
tropical Atlantic, 1: spatial variability of annual mean sea-surface temperatures,
0–20,000 years B.P. Paleoceanography 1, 43–66 (1986).
12. Monnin, E. et al. Atmospheric CO
2
concentrations over the last glacial termination.
Science 291, 112–114 (2001).
13. Lemieux-Dudon, B. et al. Consistent dating for Antarctic and Greenland ice cores.
Quat. Sci. Rev. 29, 8–20 (2010).
90° N
60° N
30° N
30° S
60° S
90° S
Latitude
–2 –1 0 1 2
Temperature trend (°C kyr–1)
1
0.75
0.5
0.25
0
–0.25
Temperature (fraction of G–IG range)
22 20 18 16 14 12 10 8
A
g
e (k
y
r)
a
b
Onset of
CO2 rise
Onset of
seesaw
60–90° N
30–60° N
0–30° S
0–30° N
30–60° S
60–90° S
Figure 5
|
Temperature change before increase in CO
2
concentration.
a, Linear temperature trends in the proxy records from 21.5–19 kyr ago (red)
and 19–17.5 kyr ago (blue) averaged in 10ulatitude bins with 1suncertainties.
b, Proxy temperature stacks for 30ulatitude bands with 1suncertainties. The
stacks have been normalized by the glacial–interglacial (G–IG) range in each
time series to facilitate comparison.
ARTICLE RESEARCH
5APRIL2012|VOL484|NATURE|53
Macmillan Publishers Limited. All rights reserved
©2012
14. Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. & Deck, B. Ice core records of
atmospheric CO
2
around the last three glacial terminations. Science 283,
1712–1714 (1999).
15. Hansen, J. et al. Climate response times: dependence on climate sensitivity and
ocean mixing. Science 229, 857–859 (1985).
16. Manabe,S. & Broccoli, A. J. The influence of continental ice sheets on the climate of
an ice age. J. Geophys. Res. 90, 2167–2190 (1985).
17. Broccoli,A. J. Tropical cooling at the Last GlacialMaximum: an atmosphere-mixed
layer ocean model simulation. J. Clim. 13, 951–976 (2000).
18. Chiang, J. C. H. & Bitz, C. M. Influence of high latitude ice cover on the marine
Intertropical Convergence Zone. Clim. Dyn. 25, 477–496 (2005).
19. Jansen, E. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon,
S. et al.) 433–497 (Cambridge Univ. Press, 2007).
20. Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl
Acad. Sci. USA advance online publication doi:10.1073/pnas.1116619109 (13
February 2012).
21. Blunier, T. et al. Synchronization of ice core records via atmospheric gases. Clim.
Past 3, 325–330 (2007).
22. Crowley, T. J. North Atlantic Deep Water cools the Southern Hemisphere.
Paleoceanography 7, 489–497 (1992).
23. Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar
seesaw. Paleoceanography 18, 1087 (2003).
24. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S.
Collapse and rapid resumption of Atlantic meridional circulation linked to
deglacial climate changes. Nature 428, 834–837 (2004).
25. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for
Bølling-Allerød warming. Science 325, 310–314 (2009).
26. Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).
27. Schmittner, A. et al. Climate sensitivity estimated from temperature
reconstructions of the Last Glacial Maximum. Science 334, 1385–1388 (2011).
28. Alley, R. B., Brook, E. J. & Anandakrishnan, S. A northern lead in the orbital band:
north-south phasing of Ice-Age events. Quat. Sci. Rev. 21, 431–441 (2002).
29. Yokoyama,Y., Lambeck, K., De Deckker,P., Johnston, P. & Fifield,L. K. Timing of the
Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716
(2000).
30. Clark, P. U., McCabe,A. M., Mix, A. C. & Weaver, A. J. Rapid rise of sea level 19,000
years ago and its global implications. Science 304, 1141–1144 (2004).
31. Marchitto, T. M., Lehman, S. J., Ortiz, J. D., Fluckiger, J. & van Geen, A. Marine
radiocarbon evidence for the mechanism of deglacial atmospheric CO
2
rise.
Science 316, 1456–1459 (2007).
32. Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the
deep Southern Ocean and deglacial CO
2
rise. Science 328, 1147–1151 (2010).
33. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial-
interglacial CO
2
variations. Nature 404, 171–174 (2000).
34. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric
CO2,and climatechangeduring theice ages.Paleoceanography21 , PA2005(2006).
35. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by
ocean circulation changes. Nature 456, 373–376 (2008).
36. Barker, S. et al. Interhemispheric Atlantic seesaw response during the last
deglaciation. Nature 457, 1097–1102 (2009).
37. Schmittner, A., Saenko, O. & Weaver, A. J. Coupling of the hemispheres in
observations and simulations of glacial climate change. Quat. Sci. Rev. 22,
659–671 (2003).
38. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the
deglacial rise in atmospheric CO
2
.Science 323, 1443–1448 (2009).
39. Stott, L., Timmermann, A. & Thunell, R. Southern hemisphere and deep-sea
warming led deglacial atmospheric CO
2
rise and tropical warming. Science 318,
435–438 (2007).
40. Huybers,P. & Denton, G. Antarctic temperature at orbital timescalescontrolled by
local summer duration. Nature Geosci. 1, 787–792 (2008).
41. Mu
¨ller, P. J., Kirst, G., Ruhland, G., von Storch, I. & Rosell-Mele, A. Calibration of the
alkenone paleotemperature index U
37K’
based on core-tops from the eastern
South Atlantic and the global ocean (60uN-60uS). Geochim. Cosmochim. Acta 62,
1757–1772 (1998).
42. Pedro,J. B. et al. The last deglaciation: timingthe bipolar seesaw. Clim. PastDiscuss.
7, 397–430 (2011).
43. Dyke, A. S. in Quaternary Glaciations: Extent and Chronology Vol. 2b (eds Ehlers, J. &
Gibbard, P. L.) 373–424 (Elsevier, 2004).
44. Laskar, J. et al. A long term numerical solution for the insolation quantities of the
Earth. Astron. Astrophys. 428, 261–285 (2004).
Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.
Acknowledgements Discussions with numerous people, including E. J. Brook,
A. E. Carlson, N. G.Pisias and J. Shaman, contributed to this research. We acknowledge
the palaeoclimate community for generating the proxy data sets used here. In
particular, we thank S. Barker, T. Barrows, E. Calvo, J. Kaiser, A. Koutavas, Y. Kubota,
V. Peck, C. Pelejero, J.-R. Petit, J. Sachs, E. Schefuß, J. Tierney and G. Wei for providing
proxy data, and R. Gyllencreutz and J. Mangerud for providing unpublished results of
the DATED Project on the retreat history of the Eurasian ice sheets. The NOAA NGDC
and PANGAEA databases were also essential to thiswork. This research used resources
of the Oak Ridge Leadership Computing Facility, located in the National Center for
Computational Sciences at Oak Ridge National Laboratory, which is supported by the
Office of Science of the Department of Energy under contract no.
DE-AC05-00OR22725. NCAR is sponsored by the NSF. J.D.S. is supported by a NOAA
Climate and Global Change Postdoctoral Fellowship. This research was supported by
the NSF Paleoclimate Program for the Paleovar Project through grant AGS-0602395.
Author Contributions J.D.S. designed the study, synthesized and analysed data, and
wrote the manuscript with P.U.C. F.H., Z.L. and B.O.-B. did the transient modelling.
S.A.M. and A.C.M. contributed to data analysis. A.S. helped interpret AMOC–CO
2
linkages. E.B.provided dataand discussion on the radiocarbon calibration. All authors
discussed the results and provided input on the manuscript.
Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of this article at
www.nature.com/nature. Correspondence and requests for materials should be
addressed to J.D.S. (shakun@fas.harvard.edu).
RESEARCH ARTICLE
54|NATURE|VOL484|5APRIL2012
Macmillan Publishers Limited. All rights reserved
©2012
METHODS
Age control. All radiocarbon dates were recalibrated using Calib 6.0.1 with the
IntCal04 calibration and the reservoir corrections suggested in the original pub-
lications. Age models based on tuning were left unchanged from the original
publications. We used the GICC05 timescale for NGRIP and GRIP, the timescale
of ref. 13 for EDML and Dome C, and glaciological age models for the Dome F
and Vostok ice cores.
Proxy temperatures. We converted proxy units to temperature for all alkenone,
Mg/Ca and TEX
86
records using the calibrations suggested by the original authors
for Mg/Ca and TEX
86
and the global core-top calibration for alkenone records
41
.
We used the published temperature reconstructions for Antarctic ice-core, pollen,
microfossil assemblage and MBT/CBT records and the GISP2 borehole calibration
for the Greenland ice cores
45
. Missing data values near the beginningand end of the
,15% of records not spanning the entire study interval were infilled using the
method of regularized expectation maximization
46
.
Stacking. The proxy data were projected onto a 5u35ugrid, linearly interpolated
to 100-yr resolution and combined as area-weighted averages. We do not
otherwise account for spatial biases in the dataset or lack of global coverage.
Uncertainty analysis. There are two main sources of uncertainty in the proxy
records: age models and temperature calibration. We used a Monte Carlo
approach to generate 1,000 realizations of each proxy temperature record after
perturbing the records with chronological and temperature errors. These per-
turbed records were then averaged to yield 1,000 realizations of the global and
hemispheric temperature stacks. The error bars on the temperature stacks repres-
ent the standard deviations of these 1,000 realizations, which provide an estimate
of the propagated uncertainty due to uncertainties in the individual proxy records.
A similar approach was applied to the transient model output to develop the
modelled temperature stacks and error bars. We developed continuous uncer-
tainty estimates for radiocarbon-based chronologies, taking into account radio-
carbon date errors as well as interpolation uncertainty between dates using a
random walk model
47
. Age-model uncertainties for tuned records, the Dome F
and Vostok ice cores, and regionaltemperature reconstructions for Beringia
48
were
assumed to be 2% (1s). We used the Dome C and EDML ice-core age-model
uncertainties
13
and GICC05 maximum counting errors
49,50
as 2suncertainties
for the NGRIP and GRIP ice cores as suggested in ref. 50. We used the following
1stemperature calibration uncertainties: alkenones, T5(Uk0
37 20.044 60.016)/
(0.033 60.001) (ref. 41); Mg/Ca 560.02Bexp(60.003AT), where Aand Bare
constants (ref. 51); TEX
86
,61.7 uC (ref. 52); ice cores, 610% (ref. 53); pollen,
microfossil assemblages and MBT/CBT, 61.5 uC. We did not account for
analytical uncertainties in proxy measurements. Chronological errors in the
Monte Carlo simulations were temporally autocorrelated but were random in
space (but this does not account for systematic errors among the proxy records
due to uncertainties in the radiocarbon calibration), whereas temperature errors
were assumed to be random in space and time. We note thatour study is concerned
with temperature anomalies and is thus sensitive to relative but not absolute
temperature errors in a proxy record. See Supplementary Information for more
details and examples. Age-model uncertainties for the Antarctic Dome C CO
2
record related to methane synchronization to Greenland were estimated on the
basis of the combined uncertainties associated with Greenland layer counting,
Greenland ice-age/gas-age differences and methane tuning to Antarctica. These
uncertainties were used to generate 1,000 realizations of the CO
2
record, which
together withthe 1,000 temperature stack realizationsyield the 1,000 temperature–
concentration lead–lag estimates shown in Fig. 2b.
Robustness of results. We evaluated how well the proxy sites represent the globe
by subsampling the twentieth-century instrumental temperature record and our
transient modelling output of the deglaciation at the 80 proxy sites. Both
approaches suggested that the mean of the proxy sites approximates the global
mean fairly well. We recalculated the stack after interpolating the records to
500-yr resolution but this did not change the time series or its uncertainty.
Differences in areal weighting affect the glacial–interglacial amplitude of the stack
but have little impact on its structure. Jackknifing suggests that the stack is not
particularly sensitive to the number of records used. A leave-one-out proxy
jackknifing approach suggests that the correlation (r
2
50.90–0.95) and lead–
lag relation (300–600-yr temperature lag) between global temperature and CO
2
concentration are not sensitive to proxy type. Statistical infilling of missing data
values has negligible impact on the results. Although we here use the IntCal04
radiocarbon calibration, we tested the sensitivity of our results to this choice by
recalibrating radiocarbon dates using the IntCal09 calibration. This makes the
global stack up to 350 yr older during the Heinrich 1 interval, and shifts the overall
phase lag relative to CO
2
concentration from 460 6340 to 350 6340 yr. We
consider the IntCal04 calibration to be more accurate for the reasons discussed
in Supplementary Information. Lag correlations suggest that Antarctic temper-
ature led CO
2
concentration slightly throughout the deglaciation, whereas global
temperature led CO
2
concentration at the onset of deglaciation but lagged behind
it thereafter. The lead–lag relation between CO
2
concentration and the global
temperature stack is not significantly changed by detrending the time series to
remove the deglacial ramp in each quantity. The significance levels of the correla-
tions between global temperature and CO
2
concentration and between Pa/Th and
DTwere determined by calculating effective sample sizes of these highly auto-
correlated time series (CO
2
concentration, 4.3; global temperature, 4.1; Pa/Th,
5.4; DT, 6.2; Atlantic DT, 5.5) using equation 6.26 of ref. 54. See Supplementary
Information for more discussion of these tests.
Model freshwater forcing. Whereas the forcing from insolation, greenhouse
gases and ice sheets during the deglaciation are fairly well constrained, freshwater
forcing is comparatively uncertain. Several model freshwater schemes were
tested, and the final run was based on the meltwater scenario (Supplementary
Fig. 30) that produced North Atlantic climate variability in best agreement with
proxy reconstructions. The raw modelled AMOC time series (Fig. 4f, thin lines)
were effectively smoothed with a Monte Carlo approach similar to the one used to
develop the modelled temperature stacks (Fig. 4e), to facilitate direct comparison
of the two. More specifically, the smoothed AMOC time series (Fig. 4f, bold lines)
are the means of 1,000 realizations of the raw AMOC time series generated by
perturbing them with 300-yr (1s) age-model errors.
45. Cuffey, K. M. & Clow, G. D. Temperature, accumulation, and ice sheet elevation in
central Greenland through the last deglacial transition. J. Geophys. Res. 102,
26383–26396 (1997).
46. Schneider, T. Analysis of incomplete climate data: estimation of mean values and
covariance matrices and imputation of missing values. J. Clim. 14, 853–871
(2001).
47. Huybers, P. & Wunsch, C. A depth-derived Pleistocene age model: uncertainty
estimates, sedimentation variability, and nonlinear climate change.
Paleoceanography 19, PA1028 (2004).
48. Viau, A. E., Gajewski, K., Sawada, M. C. & Bunbury, J. Low- and high-frequency
climate variability in eastern Beringia during the past 25 000 years. Can. J. Earth
Sci. 45, 1435–1453 (2008).
49. Rasmussen, S. O. et al. Synchronization of the NGRIP, GRIP, and GISP2 ice cores
across MIS 2 and palaeoclimatic implications. Quat. Sci. Rev. 27, 18–28 (2008).
50. Svensson,A. et al. A 60000 year Greenland stratigraphic ice corechronology. Clim.
Past 4, 47–57 (2008).
51. Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in
planktonic foraminifera from a sediment trap time series. Paleoceanography 18,
1050 (2003).
52. Kim, J. H., Schouten, S., Hopmans, E. C., Donner, B. & Damste, J. S. S. Global
sediment core-top calibration of the TEX
86
paleothermometer in the ocean.
Geochim. Cosmochim. Acta 72, 1154–1173 (2008).
53. Jouzel, J. et al. Magnitude of isotope/temperature scaling for interpretation of
central Antarctic ice cores. J. Geophys. Res. 108, 4361 (2003).
54. von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research 115
(Cambridge Univ. Press, 1999).
ARTICLE RESEARCH
Macmillan Publishers Limited. All rights reserved
©2012
... In particular, the ~100,000-year periodicity reflected in most marine and ice core records implies that changes in eccentricity-the shape of Earth's orbit around the Sun-is the dominant pacemaker of glacial-interglacial climate change. However, the change in solar insolation associated with the eccentricity cycle (~2 W m -2 ) is relatively weak and insufficient to explain the full magnitude of global temperature change (~6°C) observed between glacial and interglacial periods (Imbrie et al., 1993;Wunsch, 2004;von Deimling et al., 2006;Shakun et al., 2012;Tierney et al., 2020;Seltzer et al., 2021). The mismatch in the relative amplitude of the 100,000-year periodicity between climate forcing and climate response is commonly referred to as the "100-kyr Problem" (Figure 1.1). ...
... Antarctic (Pedro et al., 2012;Parrenin et al., 2013;Marcott et al., 2014) and southern hemisphere temperatures (Shakun et al., 2012) has led some to suggest that dynamic processes in the southern hemisphere, initiated by the Earth system's response to orbital forcing, helped regulate the concentration of atmospheric CO2 throughout the Pleistocene (e.g., Anderson et al., 2009;Denton et al., 2010;Toggweiler & Lea, 2010). In turn, the radiative potential of CO2 as a greenhouse gas, as well as the relatively rapid timescale of atmospheric mixing, would have helped to globalize the glacial-interglacial climate signal (Shakun et al., 2012), plunging the planet into an ice age when CO2 was drawn down and propelling it into an interglacial state when CO2 rose. ...
... Antarctic (Pedro et al., 2012;Parrenin et al., 2013;Marcott et al., 2014) and southern hemisphere temperatures (Shakun et al., 2012) has led some to suggest that dynamic processes in the southern hemisphere, initiated by the Earth system's response to orbital forcing, helped regulate the concentration of atmospheric CO2 throughout the Pleistocene (e.g., Anderson et al., 2009;Denton et al., 2010;Toggweiler & Lea, 2010). In turn, the radiative potential of CO2 as a greenhouse gas, as well as the relatively rapid timescale of atmospheric mixing, would have helped to globalize the glacial-interglacial climate signal (Shakun et al., 2012), plunging the planet into an ice age when CO2 was drawn down and propelling it into an interglacial state when CO2 rose. ...
Thesis
Full-text available
The Southern Ocean is an important player in Earth’s late quaternary climate history due in part to its role in mediating the exchange of carbon dioxide between the atmosphere and deep ocean on glacial-interglacial timescales. Reconstructions from the Atlantic and Pacific sectors of the Southern Ocean reveal that changes in ocean circulation and deep-sea ventilation at the end of the Last Ice Age were not synchronous across the Southern Ocean, emphasizing the importance of regional dynamics on deglacial climate change. Knowledge of circulation and ventilation changes in the Indian sector is limited by comparison, owing to the difficulty of recovering sediment cores with sufficient temporal resolution and spatial coverage in the region. Resolving this history is crucial to developing a unified theory of Southern Ocean dynamics as Earth transitioned out of the Last Ice Age. The central aim of this dissertation is to bring modern and paleo perspectives to bear on the circulation and ventilation history of the interior Indian Ocean. The first half of the dissertation (Chapters 2 and 3) describes the hydrography and stable isotope geochemistry of the modern Indian Ocean and refines proxy relationships for salinity and temperature used to reconstruct past ocean conditions in later chapters. The second half (Chapters 4 and 5) presents new high-resolution down-core records of circulation and ventilation change from upper and lower cells of the Indian sector’s overturning circulation. Each chapter makes extensive use of new sediment and seawater samples collected from the southeast Indian Ocean during the Coring to Reconstruct Ocean Circulation and Carbon dioxide across 2 Seas (CROCCA-2S) expedition in 2018. Chapter 2 combines 234 new seawater samples from the CROCCA-2S study region with historical data to present a broad-scale hydrographic survey of the south Indian Ocean. Temperature, salinity, and stable oxygen isotope data (δ18O) suggest the south Indian Ocean west of ~85°E is strongly influenced by eddy turbulence induced by the southward-flowing Leeuwin Current. The resulting mixing between subtropical and subantarctic waters yields a regional δ18O – salinity relationship distinct from the one dictated by hydroclimatic processes throughout the rest of the Indian subtropics, carrying important implications for paleosalinity reconstructions in the region. Chapter 3 presents a newly compiled database of paired foraminiferal Mg/Ca-δ18O observations from 115 Indian Ocean surface sediment samples to develop regional calibrations of the magnesium-to-calcium (Mg/Ca) temperature proxy and explore its sensitivity to salinity and carbonate chemistry in four planktic species. Multivariate regression and Bayesian factor analysis suggest temperature-only calibrations offer sufficiently robust parameterizations to reconstruct past temperatures with surface-dwelling species Globigerinoides ruber and Globigerina bulloides, despite some sensitivity to non-thermal parameters. Data from subsurface-dwelling Globorotalia inflata and Globorotalia truncatulinoides were restricted to the well-mixed water column in the southeast Indian Ocean, and therefore did not exhibit a broad enough dynamic range to yield robust calibrations. Chapter 4 features a reconstruction of the temperature and salinity history of Indian- sourced Subantarctic Mode Water (SAMW), an important shallow interior water mass that contributes substantially to the return flow of the global overturning circulation. Results from two foraminiferal species (G. bulloides and G. truncatulinoides) in core TT1811- 50GGC located within the region’s SAMW production center reveals an abrupt increase in salinity (~2 – 2.6 PSU) at the onset of deglacial warming (~20 ka). This high salinity event occurs synchronously (within error) with an increase in water mass age, according to radiocarbon analyses from the same core. These data capture the incorporation of salty, aged glacial bottom waters upwelled into SAMW from the Southern Ocean. Estimates of the salt load associated with this abyssal “salty blob” suggests it was a potentially important yet under-acknowledged source of negative buoyancy to the North Atlantic that could have helped reinitiate deep water production during the last deglaciation. Finally, Chapter 5 presents three new sub-millennially resolved records of deep-sea ventilation from the Indian sector of the Southern Ocean based on the stable carbon isotope composition (δ13C) of epifaunal benthic foraminifera. These new data are combined with 17 other high-resolution benthic records to develop composite δ13C stacks that reflect the underlying basin-wide ventilation signal for the Atlantic, Indian, and Pacific sectors of the Southern Ocean. A comparative analysis reveals distinctly different ventilation histories for each region. The onset of ventilation was time-transgressive, beginning in the Pacific (~20.9 ka) and moving to the Indian (~18.7 ka) and then the Atlantic (~15.3 ka). The earlier ventilation of the Indo-Pacific appears to be a dynamic response to changing southern hemisphere temperature, Antarctic sea ice, and southwesterly wind intensity, whereas the late ventilation of the Atlantic coincides with the resumption of deep water production in the North Atlantic. Together, this dissertation clarifies the paleoceanographic history of the southern Indian Ocean, underscores the global impact of localized dynamics in the region, and contributes to a more comprehensive view of Southern Ocean dynamics across the last major example of global climate change.
... The deglaciation is marked by progressive warming (Shakun et al., 2012) and rising CO2atm levels (Bereiter et al., 2015), along with substantial shifts in precipitation linked to millennial-scale events. In the Neotropics, HS1 (18-14.8 ...
... Between 19 and 14.8 ka, Southern Hemisphere tropical regions (CAn, NEB, SESA, SAn) exhibit increasing tree cover and decreasing fire activity, mostly driven by rising temperatures and enhanced rainfall (Fig. 12b,e) (Campos et al., 2019;Shakun et al., 2012). In contrast, NNeo exhibits the opposite trends (Fig. 12b). ...
... In contrast, NNeo exhibits the opposite trends (Fig. 12b). In the second part of deglaciation, 14.8-11.7 630 ka, a generalized increase in tree cover and fire activity (Fig. 12a,d) coincides with further warming (Shakun et al., 2012) and CO2atm rise (Bereiter et al., 2015). CAn and the northern parts of SAn indicate an increase in tree cover (Fig. 12a), likely related to the combination of warming and wet conditions (Baker and Fritz, 2015;Montade et al., 2019). ...
Preprint
Full-text available
Vegetation and fire activity have dynamically changed in response to past variations in global and regional climate. Here we investigate these responses across the Neotropics based on the analysis of modern vegetation distribution and fire activity in relation to modern climate patterns in the one hand, and a compilation of 243 vegetation records and 127 charcoal records encompassing the last 21,000 years before present (ka) in relation to past climate changes on the other 20 hand. Our analyses on the dynamics of past tree cover and fire activity focus on seven subregions: (1) northern Neotropics (NNeo); (2) central Andes (CAn); (3) Amazonia; (4) northeastern Brazil (NEB); (5) central-eastern Brazil (CEB); (6) southeastern South America (SESA); and (7) southern Andes (SAn). The regionalized assessment unveils spatial heterogeneity in the timing and controls of vegetation and fire dynamics. Temperature, atmospheric CO2 concentrations, and precipitation exhibit distinct and alternating roles as primary drivers of tree cover and fire regime changes. During the 25 Last Glacial Maximum (LGM, here covering 21-19 ka), biomass growth in high elevation sites (CAn) and in sub-and extra-tropical latitudes (SESA and SAn) was mainly limited by low temperatures and atmospheric CO2 concentrations, while fuel-limited conditions restrained fire activity. In warmer tropical regions (NNeo, Amazonia, CEB), moisture availability was likely the main controlling factor of both vegetation and fire. Throughout the deglacial phase (19-11.7 ka), progressive warming fostered a gradual biomass expansion, leading to an intensification of fire activity in the sub-and 30 extra-tropical temperature-limited regions. Meanwhile, increased (decreased) precipitation associated with millennial-scale events favored increases (decreases) in tree cover in CAn, Amazonia, CEB, and NEB (NNeo). Between 14-13 ka, most southern latitude subregions (Amazonia, CEB, SESA, SAn) saw a stepwise rise in fire activity coeval with a second rapid warming, contrary to decreased fire activity in NNeo amid relatively wetter conditions. Throughout the Holocene, when temperature and atmospheric CO2 fluctuations were lower, shifts in precipitation became the primary driver of vegetation 35 and fire dynamics across all the Neotropics. The intensification of the South American Summer Monsoon throughout the Holocene favored a continuous increase in tree cover over Amazonia, CEB, and SESA, but led to a forest cover decrease in NNeo and NEB. From the early-to the mid-Holocene, the strengthening of the Southern Westerly Winds promoted vegetation expansion and fire regime weakening in SAn. In the late Holocene, human impacts became more pronounced, with a clearer effect on regional tree cover and fire activity, particularly in NNeo and CAn. 40
... Nevertheless, the spatiotemporal patterns of the abrupt climate changes remain elusive in their manifestations and interconnections (Cheng et al., 2020Martin et al., 2023;Shakun et al., 2012). Up till now, the mechanisms by which the AMOC shifts between the alternate states remain highly obscure within the ocean-cryosphereatmosphere-land complex system Ganopolski & Rahmstorf, 2001;Lohmann et al., 2024;Timmermann et al., 2003). ...
... Collectively, the AMOC shifts essentially arises from the internal feedback loops of various random climate excitations, and the associated threshold values that vary with the background climate conditions Ganopolski, 2024;Ganopolski & Rahmstorf, 2001;Li & Born, 2019;Lofverstrom et al., 2022). This is evidenced by the strong covariances of AMOC with centennial-scale atmospheric CO 2 , ice volume and sea level fluctuations over the last glacial (Grant et al., 2012;Shakun et al., 2012;Marcott et al., 2014;Rhodes et al., 2015;. ...
Article
Full-text available
Plain Language Summary Researchers have explored how certain “sweet spot” conditions impact climate within Earth's complex system, but their role in ending ice ages is still not fully understood. Our analysis of detailed speleothem records shows significant shifts in the Asian monsoon around 17,800 and 16,090 years ago, corresponding to the collapses of the Atlantic Meridional Overturning Circulation (AMOC) during Heinrich Stadial 1. We further identified two crucial phases in the end of the Asian Heinrich Period‐1: the first from about 15,110 to 14,900 years ago, before changes in Greenland's climate, and the second around 14,690 years ago, when Greenland experienced warming. These transitions happened under climate conditions similar to Marine Isotope Stage 3, characterized by moderate levels of carbon dioxide and ice. This intermediate state likely facilitated fluctuations in the AMOC, which then influenced the timing of Asian monsoon events. Since these AMOC and Asian monsoon events are closely linked to sudden increases in carbon dioxide—accounting for about half of the total CO2 rise during the last glaciation—we propose that these factors significantly contributed to the end of the last ice age.
... T f is 5.4 °C greater than the mean T h,obs , thus demonstrating the importance of using HaliBubble for accurate reconstructions of past environmental and climatic conditions. To give a sense of the paleoclimatic significance of such a bias correction, as a comparison the magnitude of global warming from the last Glacial Maximum to the following "warm" interglacial period of the Holocene is estimated at ~4 °C (Shakun et al., 2012). ...
Article
Full-text available
Fluid inclusions (FI) trapped in microscopic cavities in halite (NaCl) crystals from evaporitic sedimentary basins are remnants of hypersaline waterbodies. Halite FI provide valuable information on past climate conditions because the density of the enclosed brine can be used for quantitative reconstructions of waterbody temperature at the time of halite precipitation. The classical approach to determine the fluid density in FI is via the liquid-vapor homogenization temperature ( T h,obs ) using FI microthermometry. Recent breakthroughs have the potential to usher in a new era for halite FI in paleoclimate research: new analytical techniques, an equation that predicts the size above which FI deform plastically, an equation of state for multi-electrolyte solutions covering the relevant ranges of temperature, pressure and concentrations, and models that predict the effect of surface tension on T h,obs in constant-volume systems. Against this backdrop we present HaliBubble, a numerical model designed for paleothermometry of Na-K-Mg-Ca-Cl-SO 4 -HCO 3 -H 2 O halite FI that includes the effect of fluid-host interactions on the physico-chemical properties of the FI. HaliBubble allows calculation of (i) the liquid pressure P L and differential stress Δ P in monophasic FI as a function of temperature ( T ), external pressure ( P ext ) and composition ( x ); (ii) the Laplace pressure term Δ T L that corrects for the premature collapse of the vapor bubble due to surface tension; and (iii) the hydrostatic pressure correction term Δ T P that takes into account the water depth at which the halite crystals formed. Compared with an ideal isochoric FI, we find that fluid-host interactions in a halite FI significantly affect P L , Δ T L and Δ T P . We illustrate the model on a halite sample that grew on the floor of the Dead Sea. FI in this halite larger than 27 μm were likely altered by an excessive FI liquid pressure. We calculate a FI entrapment temperature 5.4 °C greater than the average T h,obs , which highlights the relevance of HaliBubble to the paleoenvironmental and paleoclimatic interpretations of halite FI data. Appendix tables and figures provide P L vs. Δ P lim , Δ T L and Δ T P for various chemical compositions. A user interface of HaliBubble is found at https://www.wolframcloud.com/obj/emmanuel.guillerm/HaliBubbleDataProcessing (https://www.wolframcloud.com/obj/emmanuel.guillerm/HaliBubbleDataProcessing).
Article
The climate of the Kimberley region in tropical northwest Australia is dominated by the Indo‐Australian summer monsoon (IASM). Understanding of the palaeoclimate since the Last Glacial Maximum in this region, which is well placed to record IASM variations, is currently based on few records. Many of these are confounded by local environmental factors such as topography, anthropogenic activity or marine processes. Here, we present a geochemical record spanning the last 17 ka, in conjunction with pollen and charcoal records from 5.4 ± 0.1 ka (1 sigma uncertainty) to the present. The record comes from the floodplain of the Bullo River and as such represents variations in the hydroclimate of its 2000 km ² catchment. Results show that the deglacial was characterised by a variable monsoon until the onset of a wet interval beginning at 12.9 ± 0.9 ka. The exact onset and intensity of a dry period following 5 ka are uncertain, but conditions became progressively drier until the climate amelioration to modern conditions. These results are broadly consistent with previous research and extend our understanding of deglacial and Holocene hydroclimate variability to the eastern Kimberley, 350 km east of previously published Kimberley palaeoenvironmental records.
Chapter
Carbon sequestration plays a crucial role in mitigating climate change by capturing and storing atmospheric carbon dioxide in various natural and engineered systems. The chapter Advanced Systems for Monitoring Carbon Sequestration explores state-of-the-art technologies and methodologies for tracking, quantifying, and verifying carbon sequestration in terrestrial, oceanic, and geological reservoirs. It provides an in-depth analysis of remote sensing, geospatial modeling, sensor networks, and AI-driven analytics that enhance the accuracy and efficiency of monitoring processes. Additionally, the chapter discusses the integration of satellite imagery, LiDAR, eddy covariance flux towers, and soil carbon measurement techniques. The role of blockchain and data transparency in carbon credit verification is also examined. By addressing challenges such as data uncertainty, cost-effectiveness, and scalability, the chapter highlights future directions for advancing monitoring frameworks to support global carbon management strategies.
Article
Full-text available
Arctic permafrost stores vast amounts of terrestrial organic matter (terrOM). Under warming climate conditions, Arctic permafrost thaws, releasing aged carbon and potentially impacting the modern carbon cycle. We investigated the characteristics of terrestrial biomarkers, including n-alkanes, fatty acids, and lignin phenols, in marine sediment cores to understand how the sources of terrOM transported to the ocean change in response to varying environmental conditions, such as sea-level rise, sea-ice coverage, inland climate warming, and freshwater input. We examined two sediment records from the western Laptev Sea (PS51/154 and PS51/159) covering the past 17.8 kyr. Our analyses reveal three periods with high mass accumulation rates (MARs) of terrestrial biomarkers, from 14.1 to 13.2, 11.6 to 10.9, and 10.9 to 9.5 kyr BP. These terrOM MAR peaks revealed distinct terrOM sources, likely in response to changes in shelf topography, rates of sea-level rise, and inland warming. By comparing periods of high terrOM MAR in the Laptev Sea with published records from other Arctic marginal seas, we suggest that enhanced coastal erosion driven by rapid sea-level rise during meltwater pulse 1A (mwp-1A) triggered elevated terrOM MAR across the Arctic. Additional terrOM MAR peaks varied regionally. Peaks from the Beaufort Sea during the Bølling–Allerød coincided with a freshwater flooding event, while peaks from the Laptev Sea and the Fram Strait during the Preboreal/early Holocene coincided with periods of enhanced inland warming and prolonged ice-free conditions. Our results highlight the influence of regional environmental conditions, in addition to global drivers, which can either promote or preclude regional terrOM fluxes.
Preprint
Full-text available
A polar jet stream (PJS) split by the Laurentide Ice Sheet (LIS) is a well-established feature of Ice-Age atmospheric circulation. California’s central Sierra Nevada Mountains (37–38° N) lie near the reconstructed position of the PJS’s southern branch. Previous studies concluded that rapid deglaciation began here at ca. 16–15 ka after millennia of relatively stability at ~60 % LGM length. However, this conclusion is largely based on the behavior of glaciers in a single valley, Bishop Creek Canyon. We report 31 new 10Be samples from two new locations – Lyell Canyon and Mono Creek Canyon – and 26 recalculated 36Cl dates from Bishop Creek Canyon (n = 57). These dates indicate rapid deglaciation began at 16.4 ± 0.8 ka and lasted for ca. 1.0 kyr. Placing two previously published paleoenvironmental reconstructions (Swamp Lake and McLean’s Cave) with centennial-or-better-scale resolution on new age-depth models that provide age-uncertainty estimates, we find evidence for warming in the central Sierra Nevada at 16.4 ± 0.4 ka and drying at 16.20 ± 0.13 ka. Collectively, we interpret that rapid deglaciation began at 16.20 ± 0.13 ka. This timing is indistinguishable from that of Heinrich Event 1 (HE1), which occurred between 16.22 ± 0.04 ka and 16.04 ± 0.04 ka. We hypothesize that the Sierra Nevada’s deglaciation was driven by a northward repositioning and focusing of the winter-storm track over western North America in response to PJS reunification, bringing warmer and drier weather to the central Sierra Nevada, and that PJS reunification occurred in response HE1 thinning the LIS.
Article
Full-text available
Surface hydrology in the tropical eastern Indian Ocean significantly impacts low-latitude climate processes including the Indonesian-Australian Monsoon and the Indian Ocean Dipole. Deciphering the evolution of surface hydrology and driving mechanisms is thus important to better understand low-latitude and global climate change. Here, we present ~206 yr-resolved temperature and salinity records of surface waters spanning the past ~31 kyr, based on δ ¹⁸ O and Mg/Ca ratio of Globigerinoides ruber from Core SO18567 retrieved offshore northwestern Australia in the tropical eastern Indian Ocean. By integrating new records with published paleo-oceanographic and -climatological records, we found that increasing sea surface temperature and decreasing salinity in the tropical eastern Indian Ocean during the Heinrich stadial 1 and the Younger Dryas could be attributed to collapse of the Atlantic Meridional Overturning Circulation (AMOC). Melting of Northern Hemisphere ice sheets would have led to a southward shift of the Intertropical Convergence Zone (ITCZ) and reduced transport of warm surface waters from the low latitudes to the Northern Hemisphere high latitudes. In addition, our results indicate that the onset of the last deglacial warming in low latitudes was linked to weakening of the Hadley circulation and AMOC due to warming of Northern Hemisphere high latitudes, rather than raised global atmospheric CO 2 concentration.
Article
Full-text available
The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Inter-stadial 12 (GI-12) at 46.9±1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4±1.2 ka b2k, and the onset of GI-17 at 59.4±1.3 ka b2k. The error estimates are derived from the accumulated number of un-certain annual layers. In the 40–60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geo-magnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accu-racy of both event durations and absolute age estimates.
Book
Climatology is, to a large degree, the study of the statistics of our climate. The powerful tools of mathematical statistics therefore find wide application in climatological research. The purpose of this book is to help the climatologist understand the basic precepts of the statistician's art and to provide some of the background needed to apply statistical methodology correctly and usefully. The book is self contained: introductory material, standard advanced techniques, and the specialised techniques used specifically by climatologists are all contained within this one source. There are a wealth of real-world examples drawn from the climate literature to demonstrate the need, power and pitfalls of statistical analysis in climate research. Suitable for graduate courses on statistics for climatic, atmospheric and oceanic science, this book will also be valuable as a reference source for researchers in climatology, meteorology, atmospheric science, and oceanography.
Article
Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO_2 and CH_4 to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.
Article
We have analysed alkenones in 149 surface sediments from the eastern South Atlantic in order to establish a sediment-based calibration of the U37K′ paleotemperature index. Our study covers the major tropical to subpolar production systems and sea-surface temperatures (SST’s) between 0° and 27°C. In order to define the most suitable calibration for this region, the U37K′ values were correlated to seasonal, annual, and production-weighted annual mean atlas temperatures and compared to previously published culture and core-top calibrations. The best linear correlation between U37K′ and SST was obtained using annual mean SST from 0 to 10 m water depth (U37K′ = 0.033 T + 0.069, r2 = 0.981). Data scattering increased significantly using temperatures of waters deeper than 20 m, suggesting that U37K′ reflects mixed-layer SST and that alkenone production at thermocline depths was not high enough to significantly bias the mixed-layer signal. Regressions based on both production-weighted and on actual annual mean atlas SST were virtually identical, indicating that regional variations in the seasonality of primary production have no discernible effect on the U37K′ vs. SST relationship. Comparison with published core-top calibrations from other oceanic regions revealed a high degree of accordance. We, therefore, established a global core-top calibration using U37K′ data from 370 sites between 60°S and 60°N in the Atlantic, Indian, and Pacific Oceans and annual mean atlas SST (0–29°C) from 0 m water depth. The resulting relationship (U37K′ = 0.033 T + 0.044, r2 = 958) is identical within error limits to the widely used E. huxleyi calibrations of Prahl and Wakeham (1987) and Prahl et al. (1988) attesting their general applicability. The observation that core-top calibrations extending over various biogeographical coccolithophorid zones are strongly linear and in better accordance than culture calibrations suggests that U37K′ is less species-dependent than is indicated by culture experiments. The results also suggest that variations in growth rate of algae and nutrient availability do not significantly affect the sedimentary record of U37K′ in open ocean environments.
Book
In a recent INQUA project the extent of Pleistocene glaciations has been digitally mapped and the chronology of events reviewed. The onset of the present Ice Age in both hemispheres dates back to the Palaeogene. In Greenland, Iceland, North America and southernmost South America sizeable ice sheets formed well before 2.6 ka BP. In Alaska and on Tierra del Fuego the ice advanced further than in any later glaciations. Evidence for Early Pleistocene glaciation (2.6-0.78 Ma) has been reported from many parts of the world, but in most cases dating remains problematic, and the size of the glaciers and ice sheets is unknown. A number of Middle Pleistocene glaciations (0.78-0.13 Ma) have been identified, mostly correlated with MIS 16, 12 and 6, including the Donian, Elsterian and Saalian of Europe. The extent of the MIS 6 glaciations is well known. Especially in Eurasia the extent of the Late Pleistocene (0.13 Ma to present) glaciations had to be revised. Major ice advances are reported for 80-100 ka BP, c. 70-80 ka BP and c. 20 ka BP, with the earlier glaciations being most extensive in the east. The very different shapes of the ice sheets - Donian vs Elsterian, Early vs Late Weichselian - are as yet difficult to explain and remain a challenge for climatic modellers.