A TIRF Microscopy Technique for Real-time, Simultaneous Imaging of the TCR and its Associated Signaling Proteins

Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Journal of Visualized Experiments (Impact Factor: 1.33). 03/2012; DOI: 10.3791/3892
Source: PubMed


Signaling is initiated through the T Cell Receptor (TCR) when it is engaged by antigenic peptide fragments bound by Major Histocompatibility Complex (pMHC) proteins expressed on the surface of antigen presenting cells (APCs). The TCR complex is composed of the ligand binding TCRαβ heterodimer that associates non-covalently with CD3 dimers (the εδ and εγ heterodimers and the ζζ homodimer)1. Upon engagement of the receptor, the CD3 ζ chains are phosphorylated by the Src family kinase, Lck. This leads to the recruitment of the Syk family kinase, Zap70, which is then phosphorylated and activated by Lck. After that, Zap70 phosphorylates the adapter proteins LAT and SLP76, initiating the formation of the proximal signaling complex containing a large number of different signaling molecules2.
The formation of this complex eventually results in calcium and Ras-dependent transcription factor activation and the consequent initiation of a complex series of gene expression programs that give rise to T cell differentiation2. TCR signals (and the resulting state of differentiation) are modulated by many other factors, including antigen potency and crosstalk with co-stimulatory/co-inhibitory, chemokine, and cytokine receptors 3-4. Studying the spatial and temporal organization of the proximal signaling complex under various stimulation conditions is, therefore, key to understanding the TCR signaling pathway as well as its regulation by other signaling pathways.
One very useful model system to study signaling initiated by the TCR at the plasma membrane in T cells is glass-supported lipid bilayers, as described previously5-6. They can be utilized to present antigenic pMHC complexes, adhesion, and co-stimulatory molecules to T cells-serving as artificial APCs. By imaging the T cells interacting with the lipid bilayer using total internal reflection fluorescence microscopy (TIRFM), we can restrict the excitation to within 100 nm of the space between the glass and the cell surface 7-8. This allows us to image primarily the signaling events occurring at the plasma membrane. As we are interested in imaging the recruitment of signaling proteins to the TCR complex, we describe a two-camera TIRF imaging system wherein the TCR, labeled with fluorescent Fab (fragment antigen binding) fragments of the H57 antibody (purified from hybridoma H57-597, ATCC, ATCC Number:HB-218) which is specific for TCRβ, and signaling proteins, tagged with GFP, may be imaged simultaneously and in real time. This strategy is necessary due to the highly dynamic nature of both the T cells and of the signaling events that are occurring at the TCR. This imaging modality has allowed researchers to image single ligands 9-11 as well as recruitment of signaling molecules to activated receptors and is an excellent system to study biochemistry in-situ12-16.

Download full-text


Available from: Rajat Varma, Jan 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensitivity is essential in CD8+ T-cell killing of virus-infected cells and tumor cells. Although the affinity of the T-cell receptor (TCR) for antigen is relatively low, the avidity of T cell-antigen-presenting cell interactions is greatly enhanced by increasing the valence of the interaction. It is known that TCRs cluster into protein islands after engaging their cognate antigen (peptides bound to MHC molecules). Here, we show that mouse K(b) class I molecules segregate into preformed, long-lasting (hours) clusters on the antigen-presenting cell surface based on their bound viral peptide. Peptide-specific K(b) clustering occurs when source antigens are expressed by vaccinia or vesicular stomatitis virus, either as proteasome-liberated precursors or free intracellular peptides. By contrast, K(b)-peptide complexes generated by incubating cells with synthetic peptides are extensively intermingled on the cell surface. Peptide-specific complex sorting is first detected in the Golgi complex, and compromised by removing the K(b) cytoplasmic tail. Peptide-specific clustering is associated with increased T-cell sensitivity: on a per-complex basis, endogenous SIINFEKL activates T cells more efficiently than synthetic SIINFEKL, and wild-type K(b) presents endogenous SIINFEKL more efficiently than tailless K(b). We propose that endogenous processing generates peptide-specific clusters of class I molecules to maximize the sensitivity and speed of T-cell immunosurveillance.
    Full-text · Article · Sep 2012 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TCR-dependent signaling events have been observed to occur in TCR microclusters. We found that some TCR microclusters are present in unstimulated murine T cells, indicating that the mechanisms leading to microcluster formation do not require ligand binding. These pre-existing microclusters increase in absolute number following engagement by low-potency ligands. This increase is accompanied by an increase in cell spreading, with the result that the density of TCR microclusters on the surface of the T cell is not a strong function of ligand potency. In characterizing their composition, we observed a constant number of TCRs in a microcluster, constitutive exclusion of the phosphatase CD45, and preassociation with the signaling adapters linker for activation of T cells and growth factor receptor-bound protein 2. The existence of TCR microclusters prior to ligand binding in a state that is conducive for the initiation of downstream signaling could explain, in part, the rapid kinetics with which TCR signal transduction occurs.
    Full-text · Article · May 2014 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glass-supported planar lipid bilayer system has been utilized in a variety of disciplines. One of the most useful applications of this technique has been in the study of immunological synapse formation, due to the ability of the glass-supported planar lipid bilayers to mimic the surface of a target cell while forming a horizontal interface. The recent advances in super-resolution imaging have further allowed scientists to better view the fine details of synapse structure. In this study, one of these advanced techniques, stimulated emission depletion (STED), is utilized to study the structure of natural killer (NK) cell synapses on the supported lipid bilayer. Provided herein is an easy-to-follow protocol detailing: how to prepare raw synthetic phospholipids for use in synthesizing glass-supported bilayers; how to determine how densely protein of a given concentration occupies the bilayer's attachment sites; how to construct a supported lipid bilayer containing antibodies against NK cell activating receptor CD16; and finally, how to image human NK cells on this bilayer using STED super-resolution microscopy, with a focus on distribution of perforin positive lytic granules and filamentous actin at NK synapses. Thus, combining the glass-supported planar lipid bilayer system with STED technique, we demonstrate the feasibility and application of this combined technique, as well as intracellular structures at NK immunological synapse with super-resolution.
    Full-text · Article · Feb 2015 · Journal of Visualized Experiments
Show more