Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2

Beijing Institute of Radiation Medicine, Beijing, China.
Drug discoveries & therapeutics 12/2011; 5(6):299-305.
Source: PubMed


This study investigated the effect of ferulic acid (FA) on the up-regulation of heme oxygenase-1 (HO-1) in lymphocytes and the molecular mechanisms involved. Lymphocytes were treated with FA (0.001-0.1 μM) for certain times. Cell viability, the activity and level of expression of HO-1, and signal pathways were analyzed. FA significantly upregulated HO-1 expression both at the level of mRNA and protein in lymphocytes. Moreover, FA induced NF-E2-related factor (Nrf2) nuclear translocation and transcriptional activity, which is upstream of FA induced HO-1 expression. In addition, lymphocytes treated with FA exhibited activation of extracellular regulated kinase (ERK) and treatments with U0126 (an ERK kinase inhibitor) attenuated the FA induced activation of Nrf2, resulting in a decrease in HO-1 expression. Zinc protoporphyrin (ZnPP, a HO-1 inhibitor) markedly suppressed cytoprotection from radiation-induced cell damage by FA. Results suggested that the ERK signaling pathway controlled the anti-oxidation of FA by regulating the expression of the antioxidant enzyme HO-1.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nearly a century ago, jaundiced patients were observed to have surprising and spontaneous remissions from incurable immunologic diseases including rheumatoid arthritis, allergy, and asthma. The mystery of why this phenomenon occurred remains unresolved to this day. Bilirubin has traditionally been considered an excretory product resulting from heme metabolism with little benefit to human physiology. In the past few decades, however, the salutary role of this byproduct as a potent antioxidant has been repeatedly noted. Most recently, the molecule has been found to possess immunomodulatory properties that rival its redox capacity, possibly explaining its ability to suppress inflammation. In this review, we specifically examine unconjugated bilirubin (UCB) as an immunomodulator and explore the molecular basis for its immunosuppressive effects.
    No preview · Article · Oct 2013 · The international journal of biochemistry & cell biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ferulic acid (FA) belongs to the family of phenolic acids and is very abundant in fruits and vegetables. Over the past years, several studies have shown that FA acts as a potent antioxidant by scavenging free radicals and enhancing the cell stress response through the up-regulation of cytoprotective systems, e.g. heme oxygenase-1, heat shock protein 70, extracellular signal-regulated kinase 1/2 and the proto-oncogene, Akt. Furthermore, FA was shown to inhibit the expression and/or activity of cytotoxic enzymes, including inducible nitric oxide synthase, caspases and cyclooxygenase-2. Based on this evidence, FA has been proposed as a potential treatment for many disorders including Alzheimer's disease, cancer, cardiovascular diseases, diabetes mellitus and skin disease. However, despite the great abundance of preclinical research, only a few studies were carried out in humans, the majority of which used foods containing FA, and therefore the clinical efficacy of this mode of administration needs to be further documented. New efforts and resources are needed in clinical research for the complete evaluation of FA therapeutic potential in chronic diseases.
    No preview · Article · Dec 2013 · Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytoprotective mechanism of 7, 8-dihydroxyflavone (DHF) against oxidative stress-induced cell damage with respect to its stimulatory effect on the expression of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, was investigated in the present study. Up-regulation of HO-1 expression by DHF was both dose and time dependent in lung fibroblast V79-4 cells. DHF also increased the protein expression level of the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), and induced the translocation of Nrf2 from the cytosol into the nucleus, leading to elevated HO-1 expression. The siNrf2 RNA-transfection attenuated HO-1 expression induced by DHF treatment. In addition, DHF induced the activation of extracellular signal-regulated kinase (ERK), while U0126 (a specific pharmacological inhibitor of ERK kinase) abrogated DHF-activated Nrf2 and HO-1 expression. This suggests that DHF increased the levels of Nrf2 and HO-1 via ERK-dependent pathways. Furthermore, DHF significantly prevented the reduction of cell viability in response to oxidative stress; however, U0126 attenuated the protective effect of DHF. Taken together, these results demonstrate that DHF protected cells from oxidative stress via the activation of an ERK/Nrf2/HO-1 signaling pathway.
    No preview · Article · Mar 2014 · In Vitro Cellular & Developmental Biology - Animal
Show more