T-Cell Responses in Children to Internal Influenza Antigens, 1 Year After Immunization With Pandemic H1N1 Influenza Vaccine, and Response to Revaccination With Seasonal Trivalent-inactivated Influenza Vaccine

Jenner Institute, Old Road Campus Research Building, Oxford, UK.
The Pediatric Infectious Disease Journal (Impact Factor: 2.72). 03/2012; 31(6):e86-91. DOI: 10.1097/INF.0b013e318255e443
Source: PubMed


During seasonal influenza epidemics, 5-15% of the population are affected with an illness having a nontrivial mortality, morbidity and economic burden. Inactivated influenza vaccines are routinely used to prevent influenza infection, primarily by inducing humoral immunity. In addition, trivalent-inactivated influenza vaccines have previously been shown to boost influenza-specific T-cell responses in a small percentage of adults. We investigate here the influenza-specific T-cell response, in children, 1 year after pandemic H1N1 vaccination and the ability to boost the T-cell response with trivalent-inactivated influenza immunization.
Peripheral blood mononuclear cells (PBMCs) were isolated from children previously vaccinated with pandemic H1N1 vaccine, pre- and postseasonal 2010-2011 trivalent influenza vaccine (TIV) vaccination. Samples were analyzed by interferon-gamma enzyme-linked immunosorbent spot for reactogenicity toward internal influenza antigens (nucleoprotein, matrix protein 1 and nonstructural protein 1).
Basal ex vivo T-cell responses to nucleoprotein, matrix protein 1 and nonstructural protein 1 measured by interferon-gamma enzyme-linked immunosorbent spot assay were significantly higher in those children who had previously received an AS03B-adjuvanted split virion pandemic vaccine 12 months earlier rather than a nonadjuvanted whole virion vaccine. Boosting of these responses, 21 days after 2010/2011 seasonal TIV vaccination was observed regardless of age or prior pandemic vaccination regime, although boosting was greater in those groups with the lowest initial response.
We show here that children previously vaccinated with the 2009 pandemic H1N1 vaccine have measurable T-cell responses 1 year after vaccination. The magnitudes of these responses are dependent on both age of vaccine and type of pandemic H1N1 vaccine used. After 2010/2011 seasonal TIV vaccination, these T-cell responses undergo a small but significant boost.

26 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: An immuno-informatics study was conducted to determine possible pre-existing T cellular immunity to the recently emerged swine-origin triple reassortant H3N2 variant (S-OtrH3N2v-2011) which acquired the matrix gene of influenza A (H1N1)pdm09. Given the genetic origin of S-OtrH3N2v-2011, our study focused on the hemagglutinin (HA) and matrix1 (M1) proteins to identify common and conserved T cell epitopes. We compared HA CD4+ T cell epitopes of S-OtrH3N2v-2011 with seasonal H3N2 (1968-2011)-HA proteins. M1 CD4+ and CD8+ T cell epitopes of S-OtrH3N2v-2011 were compared with the M1 proteins of seasonal H1N1 (1977-2009) and A (H1N1)pdm09 (2009-2011) subtypes. The results revealed a high conservancy of epitopes localized particularly on HA2 and the entire M1 protein. The overall cross reactivity of predicted CD4+ T cell epitopes with previously experimentally defined (Immuno Epitope Database) CD4+ T epitopes of HA and M1 proteins was ∼51%. CD8+ T cell cross-reactivity of ∼74% was documented for M1 protein. Analysis suggests possible pre-existing CD4+ T cell immunity to S-OtrH3N2v-2011 in the human population.
    No preview · Article · Aug 2012 · Vaccine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prior immunity against influenza A viruses generates sterilizing immunity against matched (homologous) viruses and varying levels of protection against mismatched (heterologous) viruses of the same or different subtypes. Natural immunity carries the risk of high morbidity and mortality, therefore immunization offers the best preventative measure. Antibody responses against the viral hemagglutinin protein correlate with protection in humans and evidence increasingly supports a role for robust cellular immune responses. By exploiting mismatched immunity, current conventional and experimental vaccine candidates can improve the generation of cross-protective immune responses against heterologous viruses. Experimental vaccines such as virus-like particles, DNA vectors, viral vectors and broadly neutralizing antibodies are able to expand cross-protection through mismatched B- and T-cell responses. However, the generation of mismatched immune responses can also have the opposite effect and impair protective immunity. This review discusses mismatched immunity in the context of natural infection and immunization. Additionally, we discuss strategies to exploit mismatched immunity in order to improve current conventional and experimental influenza A virus vaccines.
    No preview · Article · Nov 2012 · Future Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternate prime/boost vaccination regimens employing recombinant replication-deficient adenovirus or MVA, expressing Influenza A virus nucleoprotein and matrix protein 1, induced antigen-specific T cell responses in intradermally (ID) vaccinated mice; with the strongest responses resulting from Ad/MVA immunization. In BALB/C mice the immunodominant response was shifted from the previously identified immunodominant epitope to a novel epitope when the antigen was derived from A/Panama/2007/1999 rather than A/PR/8. Alternate immunization routes did not affect the magnitude of antigen-specific systemic IFN-γ response, but higher CD8(+) T-cell IFN-γ immune responses were seen in the bronchoalveolar lavage following intransal (IN) boosting after intramuscular (IM) priming, whilst higher splenic antigen-specific CD8(+) T cell IFN-γ was seen following IM boosting. Partial protection against heterologous influenza virus challenge was achieved following either IM/IM or IM/IN but not ID/ID immunization. These data may be of relevance for the design of optimal immunization regimens for human influenza vaccines, especially for influenza-naïve infants.
    Full-text · Article · Mar 2013 · Scientific Reports
Show more