Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy

University of California Merced, United States of America
PLoS ONE (Impact Factor: 3.23). 04/2012; 7(4):e35064. DOI: 10.1371/journal.pone.0035064
Source: PubMed


In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds).
Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy).
Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections.
The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

Download full-text


Available from: Pramod Avti
  • Source
    • "For example, for cell imaging, Avti et al. adopted photoacoustic microscopy to detect, map, and quantify the trace amount of SWNTs in different histological tissue specimens. The results showed that noise-equivalent detection sensitivity was as low as about 7 pg [31]. For in vivo PA imaging, Wu et al. adopted RGD-conjugated SWNTs as a PA contrast agent, and strong PA signals could be observed from the tumor in the SWNT-RGD-injected group [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.
    Full-text · Article · May 2014 · Nanoscale Research Letters
  • Source
    • "However, in cases when endogenous molecules are insufficient, exogenous contrast agents (CAs) are developed and administered. Contrastenhanced PAT has been applied in lymph node mapping [7], multiscale imaging of tissue engineering scaffolds [8] [9], and molecular, cellular, and functional imaging [10] [11]. A variety of CAs for PAT have been reported, such as, carbon nanoparticles [7,12– 14], metallic nanoparticles [11,15–17], and organic dyes [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, graphene nanoribbons and nanoplatelets were investigated as contrast agents for photoacoustic and thermoacoustic tomography (PAT and TAT). We show that oxidized single- and multi-walled graphene oxide nanoribbons (O-SWGNRs, O-MWGNRs) exhibit approximately 5–10 fold signal enhancement for PAT in comparison to blood at the wavelength of 755 nm, and approximately 10–28% signal enhancement for TAT in comparison to deionized (DI) water at 3 GHz. Oxidized graphite microparticles (O-GMPs) and exfoliated graphene oxide nanoplatelets (O-GNPs) show no significant signal enhancement for PAT, and approximately 12–29% signal enhancement for TAT. These results indicate that O-GNRs show promise as multi-modal PAT and TAT contrast agents, and that O-GNPs are suitable contrast agents for TAT.
    Full-text · Article · Dec 2013 · Photoacoustics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review mainly describes the advances in the development of mono- to multimodal NPs and their in vitro and in vivo relevant biomedical applications ranging from imaging and tracking to cancer treatment. Besides the specific applications for classical imaging (magnetic resonance imaging, positron emission tomography, computed tomography, ultrasound, and photoacoustic imaging), the less common imaging techniques such as terahertz molecular imaging (THMI) or ion beam analysis (IBA) are mentioned. The perspectives on the multimodal theranostic NPs and their potential for clinical advances are also mentioned.
    Full-text · Article · Jan 2013
Show more