Article

Characterizing Acupuncture Stimuli Using Brain Imaging with fMRI - A Systematic Review and Meta-Analysis of the Literature

The University of Melbourne, Australia
PLoS ONE (Impact Factor: 3.23). 04/2012; 7(4):e32960. DOI: 10.1371/journal.pone.0032960
Source: PubMed

ABSTRACT

The mechanisms of action underlying acupuncture, including acupuncture point specificity, are not well understood. In the previous decade, an increasing number of studies have applied fMRI to investigate brain response to acupuncture stimulation. Our aim was to provide a systematic overview of acupuncture fMRI research considering the following aspects: 1) differences between verum and sham acupuncture, 2) differences due to various methods of acupuncture manipulation, 3) differences between patients and healthy volunteers, 4) differences between different acupuncture points.

  • Source
    • "This is the first systematic review that summarized the potential influence of acupuncture on pain-related functional connectivity of the CNS in individuals with musculoskeletal pain. The current findings strengthen the evidence from previous systematic reviews indicating that acupuncture can modulate activity in multiple cortical and subcortical brain areas[5,15,16]. All studies included in this review showed important brain activation after acupuncture treatment. The most common reported areas among the studies were the ACC, amygdala, IC, S1, S2, Th, and PFC. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture has been studied for several decades to establish evidence-based clinical practice. This systematic review aims to evaluate evidence for the effectiveness of acupuncture in influencing the functional connectivity of the central nervous system in patients with musculoskeletal pain. A systematic search of the literature was conducted to identify studies in which the central response of acupuncture in patients with musculoskeletal pain was evaluated by neuroimaging techniques. Databases searched were AMED, CINAHL, Cochrane Library, EMBASE, MEDLINE, PEDro, Pubmed, SCOPUS, SPORTDiscuss, and Web of Science. Included studies were assessed by two independent reviewers for their methodological quality by using the Downs and Black questionnaire and for their levels of completeness and transparency in reporting acupuncture interventions by using Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) criteria. Seven studies met the inclusion criteria. Three studies were randomized controlled trials (RCTs) and four studies were nonrandomized controlled trials (NRCTs). The neuroimaging techniques used were functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Positive effects on the functional connectivity of the central nervous system more consistently occurred during long-term acupuncture treatment. The results were heterogeneous from a descriptive perspective; however, the key findings support acupuncture's ability to alter pain-related functional connectivity in the central nervous system in patients with musculoskeletal pain.
    Preview · Article · Dec 2015 · Journal of Acupuncture and Meridian Studies
  • Source
    • "Various mechanisms underlying the effect of acupuncture have been suggested. Brain imaging studies have shown that acupuncture alters activation patterns in brain areas associated with pain processing[9]. It is postulated that in response to the needle stimulation mechanisms of the endogenous pain modulation such as diffuse noxious inhibitory controls (DNIC), segmental inhibition, and descending pain control pathways lead to a decrease in pain perception[10,11]. "

    Full-text · Article · Apr 2015 · Forschende Komplementarmedizin
  • Source
    • "Recent neuroimaging studies that compared the stimulation of acupuncture points to control points revealed strengthened BOLD activation in somatosensory areas, the cingulum, the basal ganglia, the brainstem, the cerebellum , as well as the insula cortex. Besides these increases in BOLD activation, these studies also found pronounced acupuncture related deactivation of BOLD signaling in the amygdala, the hippocampus, and brain areas well described as hubs of the brain's default mode network (Dhond et al., 2007; Huang et al., 2012). These observations are in good agreement with the present findings since we also found acupuncture related deactivation in default mode network associated areas and higher BOLD activation in S2 and insula, which are well described as dominant hubs of the central nervous pain network (also known as pain matrix Apkarian et al., 2005; May, 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture can be regarded as a complex somatosensory stimulation. Here, we evaluate whether the point locations chosen for a somatosensory stimulation with acupuncture needles differently change the brain activity in healthy volunteers. We used EEG, event-related fMRI, and resting-state functional connectivity fMRI to assess neural responses to standardized needle stimulation of the acupuncture point ST36 (lower leg) and two control point locations (CP1 same dermatome, CP2 different dermatome). Cerebral responses were expected to differ for stimulation in two different dermatomes (CP2 different from ST36 & CP1), or stimulation at the acupuncture point versus the control points. For EEG, mu rhythm power increased for ST36 compared to CP1 or CP2, but not when comparing the two control points. The fMRI analysis found more pronounced insula and S2 (secondary somatosensory cortex) activation, as well as precuneus deactivation during ST36 stimulation. The S2 seed-based functional connectivity analysis revealed increased connectivity to right precuneus for both comparisons, ST36 vs. CP1 and ST36 vs. CP2, however in different regions. Our results suggest that stimulation at acupuncture points may modulate somatosensory and saliency processing regions more readily than stimulation at non-acupuncture point locations. Also, our findings suggest potential modulation of pain perception due to acupuncture stimulation.
    Full-text · Article · Feb 2015 · Frontiers in Human Neuroscience
Show more