Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

Astronomy and Astrophysics (Impact Factor: 4.38). 04/2012; 550. DOI: 10.1051/0004-6361/201219398
Source: arXiv
We examine the relation between the galaxy cluster mass M and
Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for
which weak lensing (WL) mass measurements obtained from Subaru Telescope data
are available in the literature. Hydrostatic X-ray masses are derived from
XMM-Newton archive data and the SZ effect signal is measured from Planck
all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in
slope and normalisation with previous determinations using weak lensing masses;
however, there is a normalisation offset with respect to previous measures
based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect
measurements are in excellent agreement with previous determinations from
Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are
on average ~ 20 per cent larger than the corresponding weak lensing masses, at
odds with expectations. We show that the mass discrepancy is driven by a
difference in mass concentration as measured by the two methods, and, for the
present sample, the mass discrepancy and difference in mass concentration is
especially large for disturbed systems. The mass discrepancy is also linked to
the offset in centres used by the X-ray and weak lensing analyses, which again
is most important in disturbed systems. We outline several approaches that are
needed to help achieve convergence in cluster mass measurement with X-ray and
weak lensing observations.


Available from: François R. Bouchet, Jan 22, 2014