Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

Astronomy and Astrophysics (Impact Factor: 4.38). 04/2012; 550. DOI: 10.1051/0004-6361/201219398
Source: arXiv


We examine the relation between the galaxy cluster mass M and
Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for
which weak lensing (WL) mass measurements obtained from Subaru Telescope data
are available in the literature. Hydrostatic X-ray masses are derived from
XMM-Newton archive data and the SZ effect signal is measured from Planck
all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in
slope and normalisation with previous determinations using weak lensing masses;
however, there is a normalisation offset with respect to previous measures
based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect
measurements are in excellent agreement with previous determinations from
Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are
on average ~ 20 per cent larger than the corresponding weak lensing masses, at
odds with expectations. We show that the mass discrepancy is driven by a
difference in mass concentration as measured by the two methods, and, for the
present sample, the mass discrepancy and difference in mass concentration is
especially large for disturbed systems. The mass discrepancy is also linked to
the offset in centres used by the X-ray and weak lensing analyses, which again
is most important in disturbed systems. We outline several approaches that are
needed to help achieve convergence in cluster mass measurement with X-ray and
weak lensing observations.

Download full-text


Available from: François R. Bouchet, Jan 22, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of "dark energy" with exotic physical properties, or that Einstein's theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious experimental efforts to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit "Stage IV" dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski test, and direct measurements of H_0. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from GR, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and CMB data. We also show the level of precision required for other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets with broad applications, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever larger scales.
    Preview · Article · Jan 2012 · Physics Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.
    Full-text · Article · Dec 2012 · The Astrophysical Journal Supplement Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).
    Full-text · Article · Jan 2013 · Journal of Cosmology and Astroparticle Physics
Show more