Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex

ArticleinBrain Research Protocols 5(1):10-15 · March 2000with9 Reads
Impact Factor: 1.82 · DOI: 10.1016/S1385-299X(99)00051-3


    Optical imaging of intrinsic signal is a powerful technique for studying the functional organization of the brain [T. Bonhoeffer, D.S. Kim, D. Malonek, D. Shoham, A. Grinvald, Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex, Eur. J. Neurosci. 7 (1995) 1973–1988; M. Hubener, D. Shoham, A. Grinvald, T. Bonhoeffer, Spatial relationships among three columnar systems in cat area 17, J. Neurosci. 17 (1997) 9270–9284; D. Malonek, A. Grinvald, Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping, Science 272 (1996) 551–554; A. Shmuel, A. Grinvald, Functional organization for direction of motion and its relationship to orientation maps in cat area 18, J. Neurosci. 16 (1996) 6945–6964] , , and . Three components of intrinsic optical signal can be distinguished. Two of these components can be attributed either to changes in blood volume or to changes in oxygen consumption [R.D. Frostig, E.E. Lieke, D.Y. Ts'o, A. Grinvald, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 6082–6086] [7]. The origin of the third component is not yet clear but the component seems to be based on scattered light [H.U. Dodt, G. D'Arcangelo, E. Pestel, W. Zieglgansberger, The spread of excitation in neocortical columns visualized with infrared-dark field videomicroscopy, NeuroReport 7 (1996) 1553–1558; K. Holthoff, O.W. Witte, Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space, J. Neurosci. 16 (1996) 2740–2749; B.A. MacVicar, D. Hochman, Imaging of synaptically evoked intrinsic optical signals in hippocampal slices, J. Neurosci. 11 (1991) 1458–1469; L. Trachsel, H.U. Dodt, W. Zieglgansberger, The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day–night variation, Eur. J. Neurosci. 8 (1996) 319–328] , , and . A spectral fitting method with three components is used for the analysis of intrinsic optical signal [M. Nemoto, Y. Nomura, C. Sato, M. Tamura, K. Houkin, I. Koyanagi, H. Abe, Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation, J. Cereb. Blood Flow Metab. 19 (1999) 246–259] [17]. In order to validate the analysis, we need the knowledge on contribution of signal resulted from hemoglobin to total intrinsic optical signal. The exchange transfusion with fluorocarbon has the advantage that can change the spectral contribution of hemoglobin [M. Ferrari, M.A. Williams, D.A. Wilson, N.V. Thakor, R.J. Traystman, D.F. Hanley, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood–fluorocarbon exchange transfusion, Am. J. Physiol. 269 (1995) H417–H424; A.L. Sylvia, C.A. Piantadosi, O2 dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8 (1988) 163–172] and . Here we describe a new method of the reduction of hemoglobin signal from somatosensory evoked optical intrinsic signal in rat cortex by the combination of exchange transfusion with fluorocarbon and imaging system of thinned skull cranial window. The method allows for the study of the synaptically evoked changes in light scattering as well as fluorescence of calcium indicator or voltage-sensitive dye without absorption of hemoglobin.Themes: Cellular biologyTopics: Imaging techniques