Brain activation during human finger extension and flexion movements

ArticleinBrain Research 856(1-2):291-300 · March 2000with12 Reads
Impact Factor: 2.84 · DOI: 10.1016/S0006-8993(99)02385-9


    Corticospinal projections to the motor neuron pool of upper-limb extensor muscles have been reported to differ from those of the flexor muscles in humans and other primates. The influence of this difference on the central nervous system control for extension and flexion movements is unknown. Cortical activation during thumb extension and flexion movements of eight human volunteers was measured using functional magnetic resonance imaging (fMRI), which detects signal changes caused by an alteration in the local blood oxygenation level. Although the relative activity of the extensor and flexor muscles of the thumb was similar, the brain volume activated during extension was substantially larger than that during flexion. These fMRI results were confirmed by measurements of EEG-derived movement-related cortical potential. Higher brain activity during thumb extension movement may be a result of differential corticospinal, and possibly other pathway projections to the motoneuron pools of extensor and flexor muscles of upper the extremities.