Energy conservation potential, HVAC installations and operational issues in Hellenic airports

Group Energy Conservation, Institute of Environmental Research and Sustainable Development, National Observatory of Athens, I Metaxa & V. Pavlou, GR 15236 Palaia Penteli, Hellas, Greece
Energy and Buildings (Impact Factor: 2.88). 01/2003; DOI: 10.1016/j.enbuild.2003.09.006


This paper presents an overview of the results from a recently completed study on the assessment of the characteristics, current energy consumption and the potential for energy conservation in 29 Hellenic airports. The average annual total energy consumption at the airport terminals is 234 kWh/m2. A more detailed investigation for three representative airports, at different climatic zones, was also performed. Data was collected through energy audits of the three terminal buildings, thermal infrared (IR) inspections of the building envelopes and HVAC installations, an assessment of indoor environmental quality (IEQ) through long term monitoring and spot measurements of indoor thermal and visual conditions, as well as personnel and passenger questionnaires. The collected information was used to perform a detailed analysis using thermal simulations for assessing specific measures to reduce energy use without compromising comfort, and to identify possible actions for improving IEQ. For the three airports, potential energy savings range at 15–35%, while improving and maintaining indoor environmental quality.

1 Follower
38 Reads
  • Source
    • "Balaras et al. [9] investigated the energy consumption and Indoor Environment Quality of Hellenic airport terminal buildings in 2003. In terms of Indoor Environment Quality, objective and subjective observations of 3 representative airports from different climatic zones were reported. "
    [Show abstract] [Hide abstract]
    ABSTRACT: With the economic growth, a large number of airports are being or planned to be constructed or retrofitted in China. Airport terminal buildings have its unique Indoor Environment Quality (IEQ) performance due to its special architectural and operational features. In this research, instrumental objective measurements and questionnaire subjective surveys have been performed to investigate the IEQ of eight major Chinese large-hub airport terminal buildings. The questionnaire surveys show that the majority of overall satisfactory level of the airport terminal buildings lies between just satisfied and satisfied. The environmental factors can explain a part of but not all the variation of travelers' overall satisfactory level. Thermal environment and air quality are the two crucial factors for the overall satisfactory level. Instrumental measurements find that the black globe temperature in departure lounge is averagely 3-5 °C higher than air temperature due to large external glazing. By comparing the subjective and objective observations, the variation of thermal satisfactory level is found to be not as significant as the variation of thermal qualification rate, and travelers' air quality satisfactory level is highly correlated with the CO2 concentration of airport terminals.
    Full-text · Article · Oct 2015 · Building and Environment
  • Source
    • "Environmental Protection Agency (EPA) studies suggest that 30% energy savings can be realized through improvements to facilities and facility management, while more aggressive measures promise greater reductions. The potential for dramatic gains in building efficiency through intelligent management of Heating, Ventilation and Air Conditioning (HVAC) system in commercial buildings has led to considerable recent research activity [1], [2], [3], [4], [5]. Energy efficiency measures must be sensitive to human factor issues such as comfort and indoor air quality [6], [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a novel distributed architecture for controlling Heating, Ventilation and Air conditioning (HVAC) systems in commercial buildings. Zone Modules use local models and measurements to compute requests for HVAC service over various future time windows. These requests are expressed in terms of the heating/cooling service required which we can conceptually regard as tokens. A Central Scheduler balances token requests and allocates tokens to each zone for the next time slot. This allocation attempts to minimize total energy consumption while respecting operational constraints. Zone modules update their local models based on the measured thermal responses resulting from allocated tokens, and recompute forward token requests. This proposed token based architecture is inspired by medium access control protocols in communication networks. It offers several advantages in the context of HVAC systems. The architecture is scalable to realistic buildings with 200-500 thermal zones, it is robust relative to non-stationary environmental conditions and unanticipated changes in user needs, and it is modular enabling low-cost deployment without requiring expensive custom thermal modeling of buildings. We develop the zone module algorithms for computing token requests and central scheduler algorithms to allocate tokens. Using simulation studies, we demonstrate that the performance loss of our token based scheduling strategy is modest in comparison to a fully centralized nonlinear optimal control scheme.
    Full-text · Conference Paper · Jul 2015
  • Source
    • "Buildings are responsible for at least 40 per cent of energy use in most countries. In the EU region for instance, 40-45 per cent of the total energy used is consumed by buildings (Balaras et al., 2002, 2003; Markis and Paravantis, 2007; Fayaz and Kari, 2009). This striking figure is mainly the result of using mechanical and electrical equipment as part of M&E systems in building for heating, ventilation, air-conditioning and lighting. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose – The purpose of this paper is to present a case of an office building in England and show how the technology in energy efficiency in building will contribute to energy conservation. Design/methodology/approach – The paper presents a case of an office building. The building is then modelled and analysed using IES Virtual Environment VE to estimate the Target Emissions Rate (TER) and the Building Emissions Rate (BER) to see how the building could satisfy Part L of the Building Regulations. Findings – The building in case use various sustainable solutions such as limiting the heat loss and gain through the fabric, ventilation system with a good high heat recovery system, increasing the availability of daylight and good lighting control system. The office building in the case study is in full compliance with Part L of the Building Regulations. The sustainable technology in the building will assist the compliance with Part L of the Building Regulations. Research limitations/implications – This is a single case study building; more case studies for buildings of this nature are required. Practical implications – The paper demonstrates various feasible solutions of sustainable technology in buildings that might help comply with the regulation. Originality/value – The case study building is a real case taken directly from one of the author's projects when he was working as a building services engineer. This case study building and its sustainable features have not been presented before in an academic journal.
    Full-text · Article · Jun 2012 · International Journal of Energy Sector Management
Show more