Article

The introduction of logarithms into Spain

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

During the first half of the 17th century, logarithms were taught by some professors in Spain, but knowledge of this subject remained scanty until the publication of Architectura civil by Juan Caramuel (1678) and especially of Trigonometria española by José Zaragoza (1672). Logarithms were considered only as an aid for computation up to the second half of the 18th century. Only when the infinitesimal calculus became more widely spread in Spanish mathematics, analytical interpretations of logarithms were also taken into account in books such as Elementos de matemáticas by Benito Bails (1776).ResumenDurante la primera mitad del siglo XVII, los logaritmos fueron explicados por algunos profesores en España, pero su conocimiento fue escaso hasta que se publicó la Architectura civil de Juan Caramuel (1678) y, sobre todo, la Trigonometria española de José Zaragoza (1672). Hasta la segunda mitad del siglo XVIII los logaritmos se consideraron únicamente como unos auxiliares que facilitaban el cálculo. Sólo cuando en las matemáticas españolas se generalizó el cálculo infinitesimal, se incluyeron también interpretaciones analíticas de los logaritmos en libros como los Elementos de matemáticas de Benito Bails (1776).

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Similar a la historia de los logaritmos (Navarro-Loidi & Llombart, 2008), Sörensen, en 1909, con el fin de evitar las potencias de 10 con exponente negativo con las que se expresa la concentración de iones de Hidrógeno, definió el concepto de pH (potencia del ion Hidrógeno): para una disolución neutra a 25°C, el pH sería igual a 7; para una disolución de ácido clorhídrico (1 mol por litro), el pH sería cero; y para una disolución de sosa de un mol por litro, el pH sería igual a 14. ¿En qué repercute la expresión matemática sobre la concepción química de las medidas de pH? Como éste es el 'exponente negativo de la concentración del ion hidrógeno', cuando la concentración es 0.01 (10 −2 ), su pH es 2. Esta conversión matemática genera mucha confusión entre los estudiantes: ¿por qué el pH sube cuando la acidez baja? ...
Article
Full-text available
The integrated STEAM approach arises when a contextualized problem’s resolution requires different contributions (views) from each discipline. In this descriptive article we discuss the views needed from chemistry, technology, design skills, mathematical modelling and the artistic support necessary for constructing a scientific model that explains the pH of the mouth when chewing gum. To do this, we focus on describing the implementation of a short sequence of video-recorded inquiry-based contextualized activities (didactic innovation) in two classrooms with students in their third year of compulsory secondary education (14–15 years old). The scenes taken from the analysis of the implementation videos support the proposal of the connections needed in the STEAM contributions. The difficulties encountered from each discipline and the resolutions we propose shed light on how well-selected problems make STEAM views necessary, thus avoiding the usual summative multidisciplinary approach.
Article
Full-text available
As Europeans ventured more frequently on transoceanic voyages in the 16th century, it became essential for navigators to be able to carry out mathematical computations. Iberian educators rose to the occasion, developing textbooks and curricula to transmit these abstract concepts. At the same time that they strove to present new mathematical techniques, these maritime authors also captured the tacit skills that had been practiced for centuries. Thus, even though few working sailors put pen to paper, it is possible to recover aspects of their epistemology from these texts. Because books traveled so easily across borders, these academic sources also had far-reaching effects, inspiring similar educational programs across maritime Europe. This article recommends adopting a comparative perspective, since much can be learned by tracing the evolution of these shared practices as they traveled from Spain and Portugal to the Netherlands, France, and England, and back again.
Article
During the Spanish eighteenth century, a process of modernization took place in scientific knowledge, partly driven by the circulation and appropriation of new scientific ideas. In this context, the Spanish mathematician Benito Bails (1731–1797) published his course Elementos de Matemática (Elements of Mathematics) consisting of ten volumes (1779–1799), in which, among other subjects, he presented one of the most complete mathematical developments of logarithmic calculation methods of his time, by using the infinity through infinite series. The aim of our article is to demonstrate how algebraic analytical reasoning enabled Bails to obtain new and more efficient infinite algorithms that converge more quickly in the computation of logarithms in any system. We show how Euler's number ‘e’ is calculated, probably for the first time in Spanish teaching, in an eighteenth century mathematical text. Our analysis concludes that Bails’ course constituted an innovation and provides evidence of its creativity, originality and ingenuity.
Article
Full-text available
The four-figure of power of base numbers of tables needs to be created for easy synchronization with the existing Logarithm table of power of base 10 which is working on four figures. Although the five-figure of power base numbers of tables are more accurate because it is having less approximation in its establishment. The four-figure table is easy to compute doing utilization because it is having less digits to work with. This paper presents the four and five figures of Kifilideen (Power of base 11) and AntiKifilideen (Antipower of base 11) tables for the computation of mathematical problems. The four and five figures are both reliable to work with. However, there is a tradeoff between easy computation as related to the four-figure table and more accuracy as related to the five-figure table in their utilization.
Article
This article analyzes Jost Bürgi's work (1620) and its place in the history of logarithms.
Article
The discovery of hyperbolic logarithms has been variously attributed to Gregory of St-Vincent and to Alphonse Antonio de Sarasa. In this paper we describe the relationship between St-Vincent and de Sarasa, the challenge from Mersenne which provoked de Sarasa's publication, de Sarasa's understanding of logarithms, and the propositions of de Sarasa where the connection between hyperbolic areas and logarithms was first claimed. Since de Sarasa's hyperbolae were not defined analytically, he did not insist on a particular base for his logarithms, nor did he choose a value for log 1 which would have implied log AB=log A+log B, so we conclude that he did not focus on what Euler later called natural logarithms. An explanation of the different accounts of the origin of natural logarithms offered by twentieth century writers is tentatively proposed. Copyright 2001 Academic Press.Die Entdeckung hyperbolischer Logarithmen ist verschiedentlich Gregorius a S.Vincentio und Alphonse Antonio de Sarasa zugeschrieben worden. In diesem Artikel beschreiben wir die Beziehung zwischen St.Vincentius und de Sarasa, die Herausforderung von Mersenne, die de Sarasas Veröffentlichung provozierte, de Sarasas Verständnis von Logarithmen und die Sätze de Sarasas in denen der Zusammenhang zwischen Hyperbelflächen und Logarithmen zum ersten Mal behauptet worden ist. Da de Sarasas Hyperbeln nicht analytisch definiert waren, forderte er keine Basis fuer seine Logarithmen. Er wählte auch keinen Wert fuer log 1, der log AB=log A=log B impliziert hätte. So können wir schliessen, dass er sich nicht auf das konzentrierte, was Euler später natürliche Logarithmen nannte. Eine Erklärung der unterschiedlichen Darstellungen über den Ursprung der natürlichen Logarithmen, die Autoren des 20. Jahrhunderts geben, wird ansatzweise versucht. Copyright 2001 Academic Press.MSC 1991 subject classification: 01 A 45.
Article
Obra perteneciente al Fondo Antiguo de la Biblioteca de la USAL
Trigonometria aplicada á la navegación
  • P M Cedillo
Cedillo, P.M., 1718. Trigonometria aplicada á la navegación. L.M. Hermosilla, Seville
Escuela militar de fortificacion
  • J Cassani
Cassani, J., 1705. Escuela militar de fortificacion. Antonio Gonçalez de Reyes, Madrid
Mathesis biceps vetus et nova
  • J. Caramuel
  • J. Caramuel
Arithmetica demostrada theorico-practica para lo mathematico y mercantil
  • J.B. Corachan
  • J.B. Corachan
El P. Zaragoza y la astronomía de su tiempo
  • A. Cotarelo
  • A. Cotarelo
Navegación especulativa y práctica
  • J. González Cabrera Bueno
  • J. González Cabrera Bueno
A Description of the Admirable Table of Logarithms
  • J. Napier
  • J. Napier
Exercitia mathematica
  • H. Sempil
  • H. Sempil
Principios de matemàtica de la Real Academia de San Fernando
  • B. Bails
  • B. Bails
Tradició i canvi cientific al País Valenciá modern
  • V. Navarro-Brotons
  • V. Navarro-Brotons
La ‘Geometria magna in minimis’ del P. Zaragoza
  • P. Peñalver y Bachiller
  • P. Peñalver y Bachiller
De mathematicis disciplinis
  • H. Sempil
  • H. Sempil
Tratado de trigonometria plana general: con la construcion y uso de las tablas de los logaritmos
  • J. Sánchez Reciente
  • J. Sánchez Reciente
Il concetto di limite nella Scuola di Anversa: Gregorio di San Vicenzo e André Tacquet
  • Valente
Juan Caramuel Vida y Obras
  • J. Velarde
  • J. Velarde
Canon trigonometricus: continens logarithmos, sinuum et tangentium, ad singula scrupula totius semicircul: Radij logarithmo, 10.0000000
  • J. Zaragoza
  • J. Zaragoza
Tabula logarithmica: Continens undecim numeronum chiliades cum fuis logarithmis ab vnitate, scilicèt ad 11100
  • J. Zaragoza
  • J. Zaragoza
Fabrica, y uso de varios instrumentos mathematicos
  • J. Zaragoza
  • J. Zaragoza
Elementos geometricos de Euclides philosopho megarense sus seys primeros libros
  • L. Carduchi
  • L. Carduchi
Liciones de matematica, ó elementos generales de aritmética
  • T. Cerdá
  • T. Cerdá
Arquitectura militar
  • V. Mut
  • V. Mut
El cultivo de las matemáticas en la España del siglo XVII
  • Navarro-Brotons
Cincel, martillo y piedra. Historia de la ciencia en España
  • J.M. Sánchez Ron
  • J.M. Sánchez Ron
Arithmetica universal
  • J. Zaragoza
  • J. Zaragoza
Trigonometria española. Resolucion de los triangulos planos y esfericos. Fabrica y uso de los senos y logarithmos
  • J. Zaragoza
  • J. Zaragoza
La ’geometria magna in minimis’ del P
  • P Bachiller
  • Y Peñalver
  • P Bachiller
  • Y Peñalver
Introductio in analysin infinitorum Elementos de aritmética, álgebra y geometría
  • A I E R Dou
  • Logroño
  • L Euler
Dou, A., 1990. Las Matemáticas en la España de los Austrias. Estudios sobre Julio Rey Pastor (1882–1962). I.E.R., Logroño. Euler, L., 1748. Introductio in analysin infinitorum. Marc-Michel Bousquet, Lausane. Reprinted: SAEM-RSM, Sevilla, 2000. Garcia, J.J., 1782. Elementos de aritmética, álgebra y geometría. Joaquín Ibarra, Madrid. García Camarero, E. y E., 1970. La polémica de la ciencia española. Alianza, Madrid.
Las figuras que degeneran en otras: La idea de límite en los libros de geometría en castellano a finales del siglo XVII
  • Navarro-Loidi
Navarro-Loidi, J., 2001. Las figuras que degeneran en otras: La idea de límite en los libros de geometría en castellano a finales del siglo XVII. In: Álvarez Lires, M., et al. (Eds.), Estudios de historia das ciencias e das técnicas. Diputación Provincial, Pontevedra, pp. 747–760 (vol. 2).
Mathesis biceps vetus et nova. Bishop's Office, Campagna. 2 vols
  • J Caramuel
Caramuel, J., 1670. Mathesis biceps vetus et nova. Bishop's Office, Campagna. 2 vols.
Prácticas de geometría y trigonometría, con las tablas de los logaritmos de los números naturales
  • P Giannini
  • Antonio
  • Espinosa
  • J Segovia
  • J Navarro-Loidi
  • Cabrera Llombart
  • J Bueno
Giannini, P., 1784. Prácticas de geometría y trigonometría, con las tablas de los logaritmos de los números naturales. Antonio Espinosa, Segovia. J. Navarro-Loidi, J. Llombart / Historia Mathematica 35 (2008) 83–101 González Cabrera Bueno, J., 1734. Navegación especulativa y práctica. Convento de Nuestra Señora de los Ángeles, Manila.
Elementos matemáticos
  • P Ulloa
Ulloa, P., 1706. Elementos matemáticos. Antonio Gonçalez de Reyes, Madrid.
Estudio comparativo desde el punto de vista matemático de textos náuticos españoles del siglo XVIII
  • M A Iglesias
Iglesias, M.A., 2000. Estudio comparativo desde el punto de vista matemático de textos náuticos españoles del siglo XVIII. UPV-EHU, Leioa-Bilbao.