Host Differences in Influenza-Specific CD4 T Cell and B Cell Responses Are Modulated by Viral Strain and Route of Immunization

David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America.
PLoS ONE (Impact Factor: 3.23). 03/2012; 7(3):e34377. DOI: 10.1371/journal.pone.0034377
Source: PubMed


The antibody response to influenza infection is largely dependent on CD4 T cell help for B cells. Cognate signals and secreted factors provided by CD4 T cells drive B cell activation and regulate antibody isotype switching for optimal antiviral activity. Recently, we analyzed HLA-DR1 transgenic (DR1) mice and C57BL/10 (B10) mice after infection with influenza virus A/New Caledonia/20/99 (NC) and defined epitopes recognized by virus-specific CD4 T cells. Using this information in the current study, we demonstrate that the pattern of secretion of IL-2, IFN-γ, and IL-4 by CD4 T cells activated by NC infection is largely independent of epitope specificity and the magnitude of the epitope-specific response. Interestingly, however, the characteristics of the virus-specific CD4 T cell and the B cell response to NC infection differed in DR1 and B10 mice. The response in B10 mice featured predominantly IFN-γ-secreting CD4 T cells and strong IgG2b/IgG2c production. In contrast, in DR1 mice most CD4 T cells secreted IL-2 and IgG production was IgG1-biased. Infection of DR1 mice with influenza PR8 generated a response that was comparable to that in B10 mice, with predominantly IFN-γ-secreting CD4 T cells and greater numbers of IgG2c than IgG1 antibody-secreting cells. The response to intramuscular vaccination with inactivated NC was similar in DR1 and B10 mice; the majority of CD4 T cells secreted IL-2 and most IgG antibody-secreting cells produced IgG2b or IgG2c. Our findings identify inherent host influences on characteristics of the virus-specific CD4 T cell and B cell responses that are restricted to the lung environment. Furthermore, we show that these host influences are substantially modulated by the type of infecting virus via the early induction of innate factors. Our findings emphasize the importance of immunization strategy for demonstrating inherent host differences in CD4 T cell and B cell responses.

Download full-text


Available from: Glendie Marcelin
  • Source
    • "The prevaccinated mice showed a 3-log reduction in lung viral load on day (d) 7 post-challenge compared to PBS pre-treated mice, indicating faster viral clearance. Given that the circumstances associated with where and how T cells are primed following influenza infection is key to determining the quality, magnitude and fate of the resultant T cell-and B cell-memory responses [12] [13] [20] [21], we compared the IP route with the second non-productive route, IM, for the ability to prime effector, memory and recall CTLs and to induce cross-protective immunity. We sought to understand whether dispersed antigen distributed by inoculation of live-virus into the peritoneal cavity, or that restricted to the muscle and surrounding tissue, favors greater cross-reactive immune induction that can act to reduce viral load in the lung environment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of the avian-origin influenza H7N9 virus and its pandemic potential has highlighted the ever-present need to develop vaccination approaches to induce cross-protective immunity. In this study, we examined the establishment of cross-reactive CD8(+) T cell immunity in mice following immunization with live A/Puerto Rico/8/1934 (PR8; H1N1) influenza virus via two non-productive inoculation routes. We found that immunization via the intramuscular (IM) route established functional influenza-virus specific memory CD8(+) T cell pools capable of cross-reactive recall responses. Epitope-specific primary, memory and recall CD8(+) T-cell responses induced by the IM route, highly relevant to human influenza immunisations, were of comparable magnitude and quality to those elicited by the intraperitoneal (IP) priming, commonly used in mice. Furthermore, IM immunisation resulted in lower lung viral titres following heterologous challenge with A/Aichi/68 (X31; H3N2) compared to the IP route. Examining the ability of DCs from lymphoid organs to present viral antigen revealed that immune induction following IM immunization occurred in draining lymph nodes, while immunization via the IP route resulted in the priming of responses in distal lymphoid organs, indicative of a systemic distribution of antigen. No major differences in the pulmonary cytokine environment of immunized animals following X31 challenge were observed that could account for the improved heterologous protection induced by the IM route. However, while both routes induced similar levels of PR8-specific antibodies, higher levels of cross-reactive antibodies against X31 were induced following IM inoculation. Our data demonstrate how non-replicative routes of infection can induce efficient cross-reactive CD8(+) T cell responses and strong strain-specific antibody responses, with the additional benefit from IM priming of enhanced heterosubtypic antibody production. Copyright © 2015. Published by Elsevier Ltd.
    Full-text · Article · Aug 2015 · Vaccine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The humoral immune response to most respiratory virus infections plays a prominent role in virus clearance and is essential for resistance to reinfection. T follicular helper (Tfh) cells are believed to support the development both of a potent primary antibody response and of the germinal center response critical for memory B cell development. Using a model of primary murine influenza A virus (IAV) infection, we demonstrate that a novel late activator antigen-presenting cell (LAPC) promotes the Tfh response in the draining lymph nodes (dLNs) of the IAV-infected lungs. LAPCs migrate from the infected lungs to the dLN "late," i.e., 6 d after infection, which is concomitant with Tfh differentiation. LAPC migration is CXCR3-dependent, and LAPC triggering of Tfh cell development requires ICOS-ICOSL-dependent signaling. LAPCs appear to play a pivotal role in driving Tfh differentiation of Ag-primed CD4(+) T cells and antiviral antibody responses.
    Full-text · Article · Sep 2012 · Journal of Experimental Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nipah virus is a zoonotic pathogen that causes severe disease in humans. The mechanisms of pathogenesis are not well described. The first Nipah virus outbreak occurred in Malaysia, where human disease had a strong neurological component. Subsequent outbreaks have occurred in Bangladesh and India and transmission and disease processes in these outbreaks appear to be different from those of the Malaysian outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including vaccine and pathogenesis studies, have utilized a virus isolate from the original Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus replication, pathology and death when compared to NiV-B-infected animals. NiV-M infection also resulted in the activation of host immune response genes at an earlier time point. Pathogenicity was not only a result of direct effects of virus replication, but likely also had an immunopathogenic component. The differences observed between NiV-M and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. Characterization of the hamster model for NiV-B infection allows for further research of the strain of Nipah virus responsible for the more recent outbreaks in humans. This model can be used to study NiV-B pathogenesis, transmission, and countermeasures that could be used to control outbreaks.
    Full-text · Article · Jan 2013 · PLoS Neglected Tropical Diseases
Show more

Similar Publications