ArticlePDF Available

The flora of German cities is naturally rich

Authors:

Abstract and Figures

Previous studies on various scales and for various European regions and North America have shown that cities harbour more plant species than the surrounding landscape. It has been argued that the greater number of plant species is usually caused by a high number of alien plants promoted by human influence. We analysed native and naturalized vascular plant species distribution data from a comprehensive German database comparing city and non-city grid cells of 10 minutes latitude × 6 minutes longitude (c. 130 km 2 ). The number of city grid cells (n = 68) and non-city grid cells (n = 1856) differed by two orders of magnitude and species richness was highly autocorrelated. We therefore used resampling techniques. We resampled the species richness of 68 randomly selected grid cells 9999 times. This showed that not only naturalized alien but also native plant species richness was significantly higher in city grid cells. To relate environmental variables to species richness, we used 10,000 analyses of covariance of 68 city grid cells and 68 randomly selected non-city grid cells. We demonstrated that a large proportion of the higher native plant species richness could be explained by the number of geological types per grid cell (i.e. a measure of natural geological diversity). Additionally, we showed by resampling the number of geological types per grid cell that cities are not randomly distributed but are in fact in areas of high geological diversity. Hence, we conclude that city areas are preferentially located in pre-existing biodiversity hotspots and argue that they are species rich not because of but in spite of urbanization.
Content may be subject to copyright.
The flora of German cities is naturally species rich
Ingolf Kühn,1* Roland Brandl2 and Stefan Klotz1
1Department of Community Ecology, Centre for Environmental Research Leipzig-Halle,
Theodor-Lieser-Str. 4, 06120 Halle and 2Department of Animal Ecology,
University of Marburg, Karl-von-Frisch-Straße, 35032 Marburg, Germany
ABSTRACT
Previous studies on various scales and for various European regions and North America have
shown that cities harbour more plant species than the surrounding landscape. It has been
argued that the greater number of plant species is usually caused by a high number of alien
plants promoted by human influence. We analysed native and naturalized vascular plant species
distribution data from a comprehensive German database comparing city and non-city grid
cells of 10 minutes latitude ×6 minutes longitude (c. 130 km2). The number of city grid cells
(n=68) and non-city grid cells (n=1856) differed by two orders of magnitude and species
richness was highly autocorrelated. We therefore used resampling techniques. We resampled the
species richness of 68 randomly selected grid cells 9999 times. This showed that not only
naturalized alien but also native plant species richness was significantly higher in city grid cells.
To relate environmental variables to species richness, we used 10,000 analyses of covariance
of 68 city grid cells and 68 randomly selected non-city grid cells. We demonstrated that a
large proportion of the higher native plant species richness could be explained by the number of
geological types per grid cell (i.e. a measure of natural geological diversity). Additionally, we
showed by resampling the number of geological types per grid cell that cities are not randomly
distributed but are in fact in areas of high geological diversity. Hence, we conclude that city
areas are preferentially located in pre-existing biodiversity hotspots and argue that they are
species rich not because of but in spite of urbanization.
Keywords: alien plants, environmental correlates, environmental heterogeneity, native plants,
resampling methods, species richness, urbanization.
INTRODUCTION
Across the globe and on various scales, strikingly similar patterns of correlation between
human population density and species richness have been recorded. On the regional scale,
Walters (1970) was the first to point out that cities harbour more spontaneous (not
cultivated) plant species than the surrounding landscape. This pattern was confirmed on
several scales and for various European regions (Haeupler, 1975; Klotz, 1990; Pysˇek, 1993;
Kowarik, 1995; Araújo, 2003; but see Roy et al., 1999) and North America (Dobson
et al., 2001; McKinney, 2002a; Hope et al., 2003).
* Author to whom all correspondence should be addressed. e-mail: ingolf.kuehn@ufz.de
Consult the copyright statement on the inside front cover for non-commercial copying policies.
Evolutionary Ecology Research, 2004, 6: 749–764
© 2004 Ingolf Kühn
This pattern is even more striking considering how changes and developments in human
land use alter ecosystems. Such land-use changes induce changes in a variety of factors
(e.g. Sukopp and Werner, 1983; Gilbert, 1989; Wittig, 1991; Collins et al., 2000; Pickett
et al., 2001), including increases in temperature (heat effect in the city) and rainfall
(Landsberg, 1981; Oke, 1982), pollution (Douglas, 1983), impervious surfaces, habitat
fragmentation and disturbance (Kowarik, 1995; Trepl, 1995). However, fragments of
semi-natural vegetation and agricultural land within or surrounding the cities contribute
to higher biodiversity.
It is often argued that the majority of alien species establish in cities by means of culti-
vation (Barthlott et al., 1999; Kent et al., 1999). Thus, the higher species richness in cities
could mainly be ascribed to alien species (e.g. McKinney and Lockwood, 2001). Plants that
are adapted to stress or human land use and occur preferably within cities were termed
urban specialists by Hill et al. (2002). Such species could increase urban plant species
richness (Pysˇek, 1998) further. Similarly, disturbance or perturbation may lead to increased
plant species richness at intermediate levels (Sukopp and Trepl, 1987; Kowarik, 1990, 1991,
1995; Pysˇek, 1993; see Huston, 1994, for a general framework). Additionally, because
botanical research institutes tend to be more often in big cities, some have argued that the
species richness of cities is a sampling artefact (Barthlott et al., 1999). Further general issues
are the effect of area size on species richness (e.g. Rosenzweig, 1995) and the influence of
spatial autocorrelation on statistical analyses (e.g. Fortin et al., 1989; Lichstein et al., 2002).
These can cause severe problems but have largely been neglected by previous analyses.
Previous studies focused primarily on the increased richness of alien plant species due to
human influence. However, richness patterns of plant species correlate, for example, with
productivity (e.g. Waide et al., 1999; Mittelbach et al., 2001), landscape heterogeneity
(e.g. Wohlgemuth, 1998; Deutschewitz et al., 2003; Kühn et al., 2003), climate
(e.g. Wohlgemuth, 1998) and other natural factors, which, in turn, may covary with human
population density or settlements. As natural factors are important determinants for plant
species richness and as naturalized aliens account usually for just a small fraction of
urban plant species richness in Germany (e.g. Kowarik, 1995; Pysˇek, 1998), we focus on the
proportions of natural and man-made factors as correlates for native and naturalized alien
plant species richness. From previous studies we know that natural factors such as
geological diversity, soil diversity and landscape diversity are positively correlated with
native and alien plant species richness (Deutschewitz et al., 2003; Kühn et al., 2003).
Thus, we hypothesize that these natural factors are not only the most important correlates
of plant species richness but are also relevant factors for the location of cities.
MATERIALS AND METHODS
Data sources
Species numbers were calculated from the database on German flora (FLORKART, see
http://www.floraweb.de), maintained by the German Centre for Phytodiversity at the
Federal Agency for Nature Conservation (Bundesamt für Naturschutz, BfN). FLORKART
is the central database that includes all provincial or regional mapping schemes throughout
Germany. The data were mainly assembled by thousands of volunteers who recorded the
flora of their respective grid cells. This work was initiated by a mapping scheme for Central
Europe (Ehrendorfer and Hamann, 1965; Ellenberg et al., 1968), which unfortunately could
Kühn et al.750
not be realized in the desired manner. Nevertheless, a multitude of more regional mapping
schemes led to distribution atlases for West Germany (Haeupler and Schönfelder, 1989) and
East Germany (Benkert et al., 1996). Both atlases, many publications on local or regional
floras from the nineteenth century and the first half of the twentieth century, several very
recent mapping schemes and corrections were incorporated into the recent version of
FLORKART. We choose to use FLORKART for our analysis because it contains more
than 14 million records, of which 2.6 million are unique for each species in a 6×10 grid
cell in the most recent time period, making it one of the most comprehensive European
databases on plant species distribution. Therefore, we analysed this database. In our version
of FLORKART, the time of recording is referenced as three time periods: before 1950, 1950
until 1979 and from 1980 (until 2001). We used the records from 1950 onwards. Localities
of plant species are referenced within this database according to the German 1:25,000
Ordnance Survey Maps (10 minutes latitude ×6 minutes longitude, c. 130 km2, hereafter
called grid cells). Species numbers were the sums of all occurrences of both natives
and naturalized aliens (thus omitting casual and cultivated occurrences, i.e. in gardens,
arboretums, managed road verges, etc.).
Mapping intensity in Germany is very heterogeneous. Hence, only sufficiently well
mapped grid cells were used for analysis. Mapping intensity was evaluated by designating
50 control species. These control species were the 45 most frequent species mentioned
by Krause (1998) and five additional species. The latter five species were generalists and
preferably inconspicuous or regarded by many volunteers as difficult to identify. By this, we
wanted to minimize potential observer bias towards obvious, easily identifiable species. All
50 control species had to be present to include a grid cell in the analysis. This control
reduced the number of grid cells from 2995 to 1928. These control species were omitted
from further analyses to avoid circular reasoning. However, as the number of control
species is a constant in all grid cells under analysis, this does not change the general
outcome. We also carried out preliminary tests to establish if we could work with less than
50 or up to 100 species. Using less than 50 species (e.g. 30 or 40) included too many grid cells
not sufficiently well mapped (since we knew at least some regions that were poorly mapped).
Having more than 50 species (e.g. 80 or 100) led partially to the exclusion of well mapped
regions as the additional set of species included less common ones.
Despite this control mechanism, it was impossible to use data from smaller grid cells.
Though there are some regions that have been extremely well mapped in the past on the
scale of a quarter ordnance survey map (5×3) or smaller, such as Saxony (Hardtke and
Ihl, 2000), Thuringia (Korsch et al., 2002), Westphalia (Haeupler et al., 2003) and
the Dessau region (see Deutschewitz et al., 2003), the chosen grid cell size for this study was
the only one with a reasonably good coverage and quality for the whole of Germany.
We distinguished between native species (native to Germany) and alien species (species
not native to Germany). Alien species were divided into pre-1500 aliens (so-called
archaeophytes, promoted by agriculture from the Neolithic prior to the discovery of the
Americas) and post-1500 aliens (so-called neophytes, introduced due to long-distance
transport subsequent to the discovery of the Americas). We designated the immigration
status according to BiolFlor (Kühn and Klotz, 2002). This distinction is established in
Central European botanical research (e.g. Schroeder, 1969; Sykora, 1990; Pysˇek, 1998;
Hill et al., 2002; Pysˇek et al., 2003), as both groups of aliens differ markedly (e.g. Pysˇek
et al., 2002a,b), for example in ecology (the first are mainly species of arable fields, the latter
occupy a wide variety of habitats), mode of introduction (the former immigrated across
The flora of German cities 751
short and medium distances without the assistance of man but into habitats provided by
man, the latter arrived often by human mediated long-distance transport) and thus in
evolutionary history. The combination of the two databases FLORKART and BiolFlor left
3150 species for analyses, of which 2411 are native, 239 are (presumed) pre-1500 aliens
and 500 are post-1500 aliens. Furthermore, we used red list species (n=797 within
FLORKART) as another species group according to the German Red List of threatened
and endangered plants (Korneck et al., 1996).
City grid cells are those containing the centres of cities with more than 100,000
inhabitants (Statistisches Bundesamt, 2001). The centres of the German cities could easily
be recognized on the map as the old town (often of medieval origin) with usually a cathedral
and a marketplace in its centre and its often somewhat circular patterns (surrounded
by ancient city walls, ring walls, circular roads, etc). The city of Kassel could not
unambiguously be assigned to a grid cell (the city centre is located in the corners of four grid
cells), and thus the corresponding grid cells were omitted from further analyses.
Rural grid cells were defined as those with less than 5% cover of urban land use according
to the Corine Land Cover maps provided by the Federal Statistical Office of Germany
(Statistisches Bundesamt, 1997). This resulted in 1924 grid cells for Germany, 68 of which
contained city centres and 1099 of which were defined as rural. We calculated the number
of geological patches and geological types according to the Geological Survey Map
(Bundesanstalt für Geowissenschaften und Rohstoffe, 1993) per grid cell. The 241
geological types were aggregated into five substrate classes: lime, sand, loess, clay and
others. The number of natural soil types (n=69) and six natural landscape types (coasts,
valleys, plains, loess landscape, low mountains, high mountains) were calculated per
grid cell according to the 1: 1,000,000 German soil survey map (Bundesanstalt für
Geowissenschaften und Rohstoffe, 1995).
For information on land cover, we used Corine Land Cover maps (Statistisches
Bundesamt, 1997). These land cover types are hierarchically aggregated. The lowest (third)
level contains 34 land cover type classes for Germany (represented by a three-digit code
in the CLC legend, URL: http://reports.eea.eu.int/COR0-part2/en/) and will be called level
3 CLC classes hereafter. The highest (first) level aggregates the lower level CLC type classes
into five level 1 CLC classes (artificial surfaces, agricultural areas, forests and semi-natural
areas, wetlands and water bodies). From this information, we calculated the number of level
3 CLC patches, the number of level 3 CLC classes and the number of level 1 CLC classes per
grid cell.
The Federal Agency for Nature Conservation provided the respective data in grid cell
format, which were transformed from the digital maps mentioned above on geology, soil
and land cover with polygon-topology.
Data analysis
To relate the native and alien species number of rural and city grid cells to natural and
man-made factors, we used an analysis of covariance (ANCOVA; Crawley, 2002; Quinn and
Keough, 2002). The number of city grid cells and non-city grid cells differed by two orders
of magnitude, there was strong autocorrelation (see Fortin et al., 1989) between a focus grid
cell and the adjacent ones (native plant species of our analysis show a highly significant
Morans I>0.04 [P<0.001] up to a Euclidean distance of <22 grid cells) and not all grid
cells with a specific combination of abiotic features (potentially suitable for cities) were
Kühn et al.752
actually cities. Hence we used a combination of parametric and resampling methods. We
used the 68 city grid cells and randomly sampled 68 non-city grid cells to perform an
ANCOVA. This was repeated 10,000 times with random resampling of non-city grid cells
each time. We used the species number of natives, pre-1500 aliens and post-1500 aliens as
dependent variables in three analyses. The categorical predictor was city versus non-city
grid cells, while the metric predictors were the number of geological patches, geological
types, natural substrates, natural soil types and natural landscape types, level 3 Corine Land
Cover patches, level 3 Corine Land Cover classes and level 1 Corine Land Cover classes per
grid cell. We modelled the main effects as well as interactions between each of the metric
variables and the categorical variable. We estimated the two-tailed error probability from
the 95% confidence interval of the 10,000 sums of squares per variable of the ANCOVA. To
get a minimum adequate model, we stepwise deleted the least non-significant variable(s)
after one cycle of 10,000 resamples.
We partitioned the variation among natural factors (variables derived from geology
natural soil types and natural landscape types), land use factors (variables derived from
Corine Land Cover) and a city effect (city grid cell, yes/no) following the method proposed
by Legendre and Legendre (1998). Variation could be partitioned among those fractions
that (i) corresponded exclusively to one (group) of predictor(s), (ii) were joint contributions
of each (group) of predictor(s) in conjunction with the other(s) and (iii) remained
unexplained (see also Quinn and Keough, 2002). Given that there are only two predictor
variables, it is possible to compute three linear models using both predictor variables:
(model i) variable 1 as predictor and variable 2 as co-variable, (model ii) variable 2 as
predictor and variable 1 as co-variable, (model iii) variables 1 and 2 as predictors. The
R2 coefficient of model iii yields the complete explained variation. Similarly, the R2
coefficient of model i (or model ii) is the variation exclusively explained by variable 1 (or 2).
Thus the fraction of joint contributions R2
JC =R2
model iii (R2
model i +R2
model ii).
To assess the significance of differences between species richness and the number of
geological types in city grid cells and randomly selected (rural) grid cells, we used the means
of 68 cells resampled 9999 times (simple resampling) and compared this distribution to the
mean of the city grid cells.
We present the results from analyses where we performed both the resampling ANCOVA
and the simple resampling (to compare mean species richness) without replacement. For the
simple resampling, we included the city grid cells into the universe for random sampling.
This analysis was also performed with different resampling techniques (i.e. with and
without replacement, including and excluding city grid cells into the universe for random
selection) and definitions of city grid cells (e.g. >30% urban land use as the definition for
city grid cells). The results were not influenced by these differences.
To regress species richness of red list species versus the number of natives plus pre-1500
aliens (both of which are pooled together in the red list of Korneck et al., 1996), we used a
major axis regression (Legendre and Legendre, 1998). This method was more appropriate
for our data than an ordinary least square regression for two reasons. First, the numbers
of red list species and of native +naturalized pre-1500 alien plant species were in the
same dimension and sampled with the same error structure. Secondly, the error probability
of the major axis regression was assessed after 1000 permutations. Therefore, we did not
infer an error probability from an inflated number of degrees of freedom due to spatial
autocorrelation (see Dutilleul, 1993).
All analyses were performed using R (http://www.r-project.org/).
The flora of German cities 753
RESULTS
First, we checked if the use of control species resulted in a higher proportion of up-to-date
records compared with those grid cells that were omitted due to a lack of control species.
On average, 82% (standard deviation 17.5%) of the data of city grid cells used in this
analysis were from after 1980. Similarly, an average of 80% (standard deviation 23.5%)
of the non-city data were from after 1980. There were no significant differences among
the groups of natives and aliens, or between city and non-city cells. In contrast, the average
proportion of the data from 1980 onwards of those cells that were omitted was 40%
(standard deviation 36%). This differed significantly from the former groups (ANOVA,
P<0.001).
A brief overview of mean, quartiles and ranges of plant species richness in city or
non-city grid cells is given by Fig. 1. The average numbers of native species were roughly five
to six times higher than those of pre-1500 aliens and eight to twelve times higher than those
of post-1500 aliens. While the average species number outside city grid cells was always
lower than within city grid cells, their ranges were higher, as was their sample size (68 city
grid cells, 1856 non-city grid cells).
The simple resampling analysis showed that the number of pre-1500 aliens, post-1500
aliens and native plant species were significantly higher in city grid cells than expected by
random or than in rural grid cells (Fig. 2). The mean species number differed significantly
between city grid cells and both randomly sampled grid cells and randomly sampled rural
Fig. 1. Box-and-whisker plots of the species richness of native, pre-1500 alien and post-1500 alien
plant species. White bars represent city grid cells (n=68), grey bars represent non-city grid cells
(n=1856). The figure shows median species richness (lines), 25% to 75% quartiles (boxes) and ranges
(whiskers). Open circles are shown if extreme values are more than 1.5 times the interquartile range of
the box.
Kühn et al.754
grid cells for all groups (all P<0.001) (Table 1). Additionally, those species threatened or
endangered on the national scale were more abundant in city grid cells than in randomly
selected grid cells (P=0.03) or in randomly selected rural grid cells (P=0.001; see Table 1).
The resampling analysis of covariance showed for native plant species richness no
significant effect of grid cell type (city or non-city). There was a significant effect of the
number of different geological types and a marginally significant effect of land use on the
number of native species (Table 2). The species number of aliens was significantly influenced
by all three variables. For all three species groups, the analysis showed no interaction
between city and geological, soil or land use variables, respectively. The number of red list
Fig. 2. Histograms of mean species richness per grid cell in Germany for (a) native plant species, (b)
pre-1500 alien plant species and (c) post-1500 alien plant species of 68 grid cells randomly sampled
9999 times. Hatched bars represent the frequency of randomly sampled grid cells (n=1924), white
bars represent the frequency of randomly sampled rural grid cells (n=1099). The labels of the x-axis
provide the number of the midpoint of species richness classes. The interval range for native plant
species is 5, for pre-1500 alien species it is 2 and for post-1500 alien species it is 2.5. The mean species
number of city grid cells (n=68) is indicated by the black triangle. City grid cells contain centres from
cities with more than 100,000 inhabitants; rural grid cells contain less than 5% urban land cover.
Table 1. Average richness of different groups of plant species per grid cell in Germany
City grid
cells
Random grid
cells
Random rural
grid cells
Species richness of native plant species 580.7 536.1*** 516.3***
Species richness of pre-1500 alien plant species 116.7 92.4*** 85.3***
Species richness of post-1500 alien plant species 85.7 46.0*** 37.1***
Species richness of threatened or endangered
plant species
42.6 38.7* 36.7**
Note: Species richness in city grid cells was the average of 68 city grid cells with more than 100,000 inhabitants. The
number of random grid cells equalled the number of city grid cells and were 9999 times randomly selected for (i) all
German grid cells or (ii) only for rural grid cells (<5% cover of urban land use). *One-tailed error probability
(compared with species number in city grid cells) <0.05. **One-tailed error probability <0.01. ***One-tailed error
probability <0.001.
The flora of German cities 755
species was influenced by almost the same variables as that of native species, namely the
number of geological patches and the number of land use types but not by a city effect
(I. Kühn et al., unpublished).
To test the assumption that the high number of red list species in cities was not caused by
urbanization, we tested whether the species richness of red list plant species was a constant
property of the species richness of natives +naturalized pre-1500 aliens. A major axis
regression of the log-transformed species number yielded a slope of 3.8 (P=0.001) and
unity was outside of the confidence interval [3.52, 4.04]. (The slope of the ordinary least
square regression was 1.5 [P<0.001] and differed significantly from 1 [t-test, P<0.001].)
The results were similar whether city grid cells were included or not.
Partitioning the variation among the variables revealed that geology was especially
important for natives, whereas land use and in particular the city effects were increasingly
important for aliens (Fig. 3). Joint contributions or effects were those where, for example,
geology might influence land use or where land use is inseparable from city effects.
Calculating how much each of these factors contributed to the total (native and alien)
additional species in cities showed that geology was the most important single factor (30%),
while land use and city/non-city each accounted for 12% of the additional species; 46% was
attributed to combined effects.
We hypothesized that natural factors influencing plant species richness covary
with urbanization that is, they were more abundant in city grid cells and not randomly
distributed. To test this hypothesis, we resampled (i) randomly selected and (ii) randomly
selected rural grid cells in Germany and compared these to city grid cells. This showed
that the single most important factor influencing plant species richness was significantly
higher in city areas (number of geological types =7.4) than on average (number of
geological types =6.6, P=0.007) or than in rural grid cells (number of geological
types =6.2, P<0.001) (Fig. 4). Of course, there are less level 3 CLC classes outside city grid
cells (10.0) than in city grid cells (15.1), but as this is trivial and not the focus of our analysis
it was not analysed further.
Table 2. Error probabilities of the minimum adequate model of a resampling analysis of covariance
on the species number of natives and aliens between city and non-city grids in Germany
Native species Pre-1500 aliens Post-1500 aliens
Sums of
squares P
Sums of
squares P
Sums of
squares P
Number of geological
types
238521.0 <0.001 12290.1 <0.001 12523.5 0.001
Number of level 3 land
cover classes
78489.6 0.040 18082.4 <0.001 44013.4 <0.001
City/non-city 4866.2 0.981 4401.1 0.035 16787.1 <0.001
Residuals 905685.3 48178.9 88065.0
Note: Categorical factors were all 68 city and 68 randomly selected non-city grid cells, resampled 10,000 times.
Metric predictors of the full model were the number of geological patches, number of geological types, number
of natural geological substrates, number of natural soil types, number of natural landscape types, number of
level 3 Corine Land Cover (CLC) patches, number of level 3 CLC classes and number of level 1 CLC classes per
grid cell.
Kühn et al.756
DISCUSSION
The results of this study clearly showed that not only naturalized alien plant species but also
native plant species contributed to higher plant species richness in urban areas. Thus, the
high species richness of cities was not only due to cultivated or introduced alien plants, as
suggested by several authors (e.g. Barthlott et al., 1999; Kent et al., 1999; McKinney,
Fig. 3. Partitioning the variance of variables correlating with plant species richness in Germany. Slices
represent the average proportions of explained variance. These are calculated as the averages of R2
values of 10,000 analyses of covariance, each with 68 city grid cells and 68 randomly sampled grid
cells from Germany. The pie charts show the independent contribution to the explained variance of
geology (i.e. number of geological types), land use (number of level 3 Corine Land Cover classes) and
city (city or non-city grid cell); joint contributions are those that could only be explained by two or
three of the previous components together. Note that circle sizes are proportional to the explained
variances (R2).
Fig. 4. Histogram of the mean number of geological types of 68 grid cells randomly sampled 9999
times. Hatched bars represent the frequency of randomly sampled grid cells (n=1924), white bars
represent the frequency of randomly sampled rural grid cells (n=1099). The labels of the x-axis
provide the number of the midpoint of species richness classes with ranges of 0.2. The mean number
of geological types in city grid cells (n=68) is indicated by the black triangle. City grid cells contain
centres from cities with more than 100,000 inhabitants; rural grid cells contain less than 5% urban
land cover.
The flora of German cities 757
2002a). The number of geological types was the most important environmental correlate for
native and for total plant species richness. However, geological diversity itself was probably
not directly responsible for plant species richness, but within a climatic zone, geology defines
resource availability through other factors, for example soil chemistry, (micro) relief or
habitats. All this adds to environmental heterogeneity caused by geological richness,
which contributes to species richness (e.g. Wohlgemuth, 1998; Levine and DAntonio, 1999;
Lonsdale, 1999; Stohlgren et al., 1999; Davis et al., 2000; Stadler et al., 2000; Deutschewitz
et al., 2003).
A possible source of error might have been the use of our 50 control species. Two of the
authors (I.K. and S.K.) have in-depth experience in floristic mapping and were involved
in several schemes incorporated in FLORKART. Therefore, some experience in plant
distribution, plant habitat preferences, mapping procedures and mapping accuracy exists
that, unfortunately, could not be quantified in any way that we are aware without either
employing circular reasoning or calibrating to a benchmark, which does not yet exist. As
far as the distribution maps in Haeupler and Schönfelder (1989) and Benkert et al. (1996),
the experience of the authors as well as the species ecological behaviour (very broad
generalists) are concerned, it is reasonable to assume that all of the 50 control species occur
in every 6×10 grid cell. However, without using the 50 control species, our randomly
resampled grid cells would have included many more insufficiently mapped grid cells, largely
from more rural areas (for mainly stochastic and not methodological reasons). This would
have resulted in an even lower plant species richness in randomly selected or rural grid cells
while having only a minor effect on the species number per city grid cell.
An inconsistency might be the different scales for plant species distribution (1: 25,000),
geology and soil (1: 1,000,000) and land cover (1: 100,000). Unfortunately, there is no
information available for the complete area of Germany on geology, soil and land cover at a
scale of 1: 25,000. Scaling up the grid cells of plant species distribution would have resulted
in levelling off differences between city and non-city grid cells. Recognizing the appropriate
scale of an analysis is important (e.g. Allen and Hoekstra, 1991, 1992; Scheiner et al., 2000).
Scheiner et al. (2000) distinguished three different components of scale: (1) the grain, which
is the level of resolution at which the sampling took place; (2) the focus, being the level at
which the analysis takes place, which can be the same size or larger than the grain; and (3)
the extent, which is the span of the geographic area of the samples. Although we employed
different scales for plant species distribution and environmental variables, we used the same
focus and the same extent; differences were only in the grain. Using a relatively coarse grain
for environmental variables may result in underestimating the number of different patches,
and less in underestimating the number of different classes which were defined very broadly.
Therefore, we believe that the use of a smaller grain would probably lead to reduced noise in
the analysis but would not influence the general outcome of our study.
We showed that anthropogenic activities, namely land use heterogeneity, is least
important for native plant species richness and most important for the post-1500 aliens.
This is to be expected, since native plant species were once independent of humans (during
evolution and colonization of pre-human habitats) while post-1500 aliens have been
largely dependent on humans in their new range. Indeed, they would not have crossed
biogeographic barriers into foreign areas without human facilitation.
We showed that cities are not randomly distributed among areas of different geological
heterogeneity. There are good reasons why big cities are more often in areas of high
geological heterogeneity, namely to provide enough means for founding a settlement and
Kühn et al.758
facilitating development into big cities. Analyses from prehistoric settlements in ancient
Greece (Davidson, 1972) and Roman settlements in Britain (Branigan, 1972) demonstrated
the importance of geomorphology for the placement of settlements and traffic routes.
Theoretical considerations (Blouet, 1972) and empirical evidence (Southall, 2000) showed
that the availability of numerous things, such as drinking water (i.e. rivers), arable soils,
defence (e.g. outlooks) and mineral resources, promoted the growth of cities. All these
factors add to geological richness compared to average areas. Actually, most German cities
are situated on large, usually navigable, rivers. As the number of geological patches was the
most important correlate for native plant species richness in our analysis, we reason that
areas where cities were developed were already species rich before the arrival of man. This
means that, at least for native species, todays city areas were species rich independent of the
presence of a city.
Unlike natives, the groups of alien species showed a significant city effect (i.e. higher
richness within versus outside urban areas). This might be due to variables not included in
our model (for example, location of transportation corridors). Another argument is that
centres of floristic research (such as universities or research centres) and hobby botanists
were more often in larger cities than in rural areas and thus the observed pattern might
simply be a sampling artifact (Barthlott et al., 1999). On balance, we think that this result
is unlikely to be a sampling artifact, for the following reasons. While we omitted all grid
cells that were poorly mapped, there might still be a positive bias for areas mapped extra-
ordinarily well, but there is little reason to expect that alien plant species would be sampled
differently from natives, which showed no city effect.
We believe that the clear pattern of enhanced plant species diversity seen for German
flora at the national scale is likely to be similar across large parts of temperate Europe; for
example, areas of high natural heterogeneity with high native plant species richness are also
areas of high population density. However, in other climatic zones (e.g. Hope et al., 2003),
areas with another history of settlement and land use, at other spatial scales or with
different definitions of urbanization (e.g. Roy et al., 1999), the pattern might be different.
Therefore, we need to conduct similar analyses especially from other biogeographic regions.
Our data do not allow us to infer directly whether the high number of red list species in
city grid cells is due to or in spite of urbanization. While Dobson et al. (2001) could only
show a correlation between population density and proportions of imperilled plants in
California, analyses from Britain clearly showed a decline of rare species with increasing
population density (Thompson and Jones, 1999). However, our results may be caused by
similar underlying processes, as almost the same factors correlate with native plant species
richness and with those of the red list plant species.
We demonstrated that species richness of red list species is a constant property of
native +naturalized pre-1500 alien plant species richness and that the proportion of red
list plant species increases more than proportionately. Hence we reason that species-rich
grid cells have a considerably larger proportion of rare (and endangered) species than
species-poor grid cells. As city grid cells are relatively species rich, the number of red list
species is quite high as well. Thus it can also be reasoned that endangered plant species
survived in small (semi-) natural areas or those that were not intensely utilized and
which are frequently found in and around city areas and are themselves promoted by
geological diversity. However, as underlying mechanisms for plant species richness
may be co-correlated (Loreau et al., 2001), cause and effect are easily confounded
(e.g. Araújo, 2003).
The flora of German cities 759
Another reason for this pattern might be too long a time frame of the plant species
records. If the time frame was too long, species that never co-existed together might
co-occur together in the analysis. However, we used only records after 1950, when
city centres were already completely developed. Furthermore, there were on average less
than 20% of the records from before 1980 with no significant differences between
city or non-city grid cells. Thus, the proportions of species that could not be recorded later
from city and non-city grid cells were the same. Therefore, it is unlikely that the results
are derived from a higher number of pseudo co-occurrences in cities that were separated
in time.
It is well documented that urbanization is one of the major threats to biodiversity
(Wilson, 1988; Thompson and Jones, 1999; McKinney, 2002b; Liu et al., 2003). When
this takes place in areas of high biodiversity, the threat of species loss will increase.
Recent analyses on a global scale (Cincotta et al., 2000; Liu et al., 2003) have shown
that the human population and the number of households grow extraordinarily in
biodiversity hotspots. It appears that human habitat selection (a preference of urban
over rural habitats) is consistent with an evolutionarily stable strategy and that this pattern
of habitat use is associated with increased threats to the biodiversity of several animal
groups and higher plants (Morris and Kingston, 2002). For Germany, Korneck et al. (1998)
state that urbanization is one threat among others to biodiversity. Combining these
observations with our results, we reason that cities are still rich in native species despite
urbanization.
Additionally, cities form new habitats for completely human-managed cultivated plant
communities (e.g. Whitney and Adams, 1980; Wittig, 1991; Pickett et al., 2001; Hope et al.,
2003). These artificial (e.g. horticultural) plant assemblages, which are discussed as
functioning ecosystems and placed in conceptual frameworks (e.g. Savard et al., 2000;
Löfvenhaft et al., 2002), may add considerably to the biodiversity of cities. So besides the
effect on native as well as naturalized alien plant species richness demonstrated in this study,
the diversity of cities consists of these assemblages in gardens, parks, cemeteries or other
habitats completely maintained by humans.
In summary, our findings show that German cities, both currently and in the past, were
preferentially located in pre-existing biodiversity hot spots. We suspect that this pattern
is similar for other temperate cities in Europe and elsewhere under similar environmental
conditions and histories of settlement, and that urban areas are even more important
for the conservation of floristic biodiversity than previously realized. We conclude that
to maintain species diversity it is vital to increase conservation activities in human-
dominated ecosystems, particularly those in and around cities (cf. Balmford et al., 2001;
Rosenzweig, 2003; but see Dobson et al., 2001) and that a full understanding of the
importance of urban biodiversity be incorporated into urban development and planning
(Niemelä, 1999).
ACKNOWLEDGEMENTS
FLORKART was provided by the German Centre for Phytodiversity at the Federal Agency for
Nature Conservation. Furthermore, we thank H. Fink and R. May (Federal Agency for Nature
Conservation) for providing environmental data. Steve Higgins, Harald Auge and three anonymous
referees provided very valuable suggestions and comments on earlier drafts of the manuscript.
Steve Higgins and Sarah Gwillym improved our English.
Kühn et al.760
REFERENCES
Allen, T.F.H. and Hoekstra, T.W. 1991. Role of heterogeneity in scaling ecological systems under
analysis. In Ecological Heterogeneity (J. Kolasa and S.T.A. Pickett, eds.), pp. 4768. New York:
Springer.
Allen, T.F.H. and Hoekstra, T.W. 1992. Toward a Unified Ecology. New York: Columbia University
Press.
Araújo, M.B. 2003. The coincidence of people and biodiversity in Europe. Global Ecol. Biogeogr.,
12: 512.
Balmford, A., Moore, J.L., Brooks, T. et al. 2001. Conservation conflicts across Africa. Science,
291: 26162619.
Barthlott, W., Biedinger, N., Braun, G. et al. 1999. Terminological and methodological aspects of the
mapping and analysis of the global biodiversity. Acta Bot. Fenn., 162: 103110.
Benkert, D., Fukarek, F. and Korsch, H. 1996. Verbreitungsatlas der Farn- und Blütenpflanzen
Ostdeutschlands. Jena: Fischer.
Blouet, B.W. 1972. Factors influencing the evolution of settlement patterns. In Man, Settlement and
Urbanism (P.J. Ucko, R. Tringham and G.W. Dimbleby, eds.), pp. 315. Cambridge, MA:
Schenkman.
Branigan, K. 1972. Verulamium and the Chiltern villas. In Man, Settlement and Urbanism (P.J. Ucko,
R. Tringham and G.W. Dimbleby, eds.), pp. 851855. Cambridge, MA: Schenkman.
Bundesanstalt für Geowissenschaften und Rohstoffe. 1993. Geologische Karte der Bundesrepublik
Deutschland 1:1,000,000. Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe
(Map).
Bundesanstalt für Geowissenschaften und Rohstoffe. 1995. Bodenübersichtskarte 1: 1,000,000.
Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe (Map).
Cincotta, R.P., Wisnewski, J. and Engelman, R. 2000. Human population in the biodiversity
hotspots. Nature, 404: 990992.
Collins, J.P., Kinzig, A., Grimm, N.B. et al. 2000. A new urban ecology. Am. Sci., 88: 416425.
Crawley, M.J. 2002. Statistical Computing: An Introduction to Data Analysis Using S-Plus.
Chichester: Wiley.
Davidson, D.A. 1972. Terrain adjustment and prehsitoric communities. In Man, Settlement
and Urbanism (P.J. Ucko, R. Tringham and G.W. Dimbleby, eds.), pp. 1722. Cambridge, MA:
Schenkman.
Davis, M.A., Grime, J.P. and Thompson, K. 2000. Fluctuating resources in plant communities:
a general theory of invasibility. J. Ecol., 88: 528534.
Deutschewitz, K., Lausch, A., Kühn, I. and Klotz, S. 2003. Native and alien plant species richness
in relation to spatial heterogeneity on a regional scale in Germany. Global Ecol. Biogeogr.,
12: 299311.
Dobson, A.P., Rodriguez, J.P. and Roberts, W.M. 2001. Synoptic tinkering: integrating strategies for
large-scale conservation. Ecol. Appl., 11: 10191026.
Douglas, I. 1983. The Urban Environment. London: Edward Arnold.
Dutilleul, P. 1993. Modifying the t-test for assessing the correlation between two spatial processes.
Biometrics, 49: 305314.
Ehrendorfer, F. and Hamann, U. 1965. Vorschläge zu einer floristischen Kartierung von
Mitteleuropa. Berichte der Deutschen Botanischen Gesellschaft, 78: 3550.
Ellenberg, H., Haeupler, H. and Hamann, U. 1968. Arbeitsanleitung für die Kartierung der
Flora Mitteleuropas (Ausgabe für die Bundesrepublik Deutschland). Mitteilungen der Floristisch-
Soziologischen Arbeitsgemeinschaft N.F., 13: 284296.
Fortin, M.J., Drapeau, P. and Legendre, P. 1989. Spatial autocorrelation and sampling design in
plant ecology. Vegetatio, 83: 209222.
Gilbert, O.L. 1989. Ecology of Urban Habitats. London: Chapman & Hall.
The flora of German cities 761
Haeupler, H. 1975. Statistische Auswertungen von Punktrasterkarten der Gefäßpflanzenflora
Süd-Niedersachsens. Scripta Geobotanica, 8: 1141.
Haeupler, H. and Schönfelder, P. 1989. Atlas der Farn- und Blütenpflanzen der Bundesrepublik
Deutschland. Stuttgart: Ulmer.
Haeupler, H., Jagel, A. and Schumacher, W. 2003. Verbreitungsatlas der Farn- und Blütenpflanzen
in Nordrhein-Westfalen. Recklinghausen: Landesanstalt für Ökologie, Bodenordnung und
Forsten NRW.
Hardtke, H.-J. and Ihl, A. 2000. Atlas der Farn- und Samenpflanzen Sachsens. Dresden: Sächsisches
Landesamt für Umwelt und Geologie.
Hill, M.O., Roy, D.B. and Thompson, K. 2002. Hemeroby, urbanity and ruderality: bioindicators of
disturbance and human impact. J. Appl. Ecol., 39: 708720.
Hope, D., Gries, C., Zhu, W.X. et al. 2003. Socioeconomics drive urban plant diversity. Proc. Natl.
Acad. Sci. USA, 100: 87888792.
Huston, M.A. 1994. Biological Diversity: The Coexistence of Species on Changing Landscapes.
Cambridge: Cambridge University Press.
Kent, M., Stevens, R.A. and Zhang, L. 1999. Urban plant ecology patterns and processes:
a case study of the flora of the City of Plymouth, Devon, UK. J. Biogeogr., 26: 12811298.
Klotz, S. 1990. Species/area and species/inhabitants relations in European cities. In Urban Ecology:
Plants and Plant Communities in Urban Environments (H. Sukopp and S. Hejný, eds.), pp. 99–103.
The Hague: SPB Academic Publishing.
Korneck, D., Schnittler, M. and Vollmer, I. 1996. Rote Liste der Farn- und Blütenpflanzen
(Pteridophyta et Spermatophyta) Deutschlands. In Rote Liste gefährdeter Pflanzen Deutschlands
(G. Ludwig and M. Schnittler, eds.), pp. 21–187. Bonn: Bundesamt für Naturschutz.
Korneck, D., Schnittler, M., Klingenstein, F. et al. 1998. Warum verarmt unsere Flora? Auswertung
der Roten Liste der Farn- und Blütenpflanzen Deutschlands. In Ursachen des Artenrückgangs von
Wildpflanzen und Möglichkeiten zur Erhaltung der Artenvielfalt (F. Klingenstein and G. Ludwig,
eds.), pp. 299–444. Bonn: Bundesamt für Naturschutz.
Korsch, H., Westhus, W. and Zündorf, H.-J. 2002. Verbreitungsatlas der Farn- und Blütenpflanzen
Thüringens. Jena: Weissdorn-Verlag.
Kowarik, I. 1990. Some responses of flora and vegetation to urbanization in central Europe. In
Urban Ecology: Plants and Plant Communities in Urban Environments (H. Sukopp and S. Hejný,
eds.), pp. 45–74. The Hague: SPB Academic Publishing.
Kowarik, I. 1991. The adaptation of urban flora to man-made perturbations. In Terrestrial and
Aquatic Ecosystems: Perturbation and Recovery (O. Ravera, ed.), pp. 176–184. London: Ellis
Horwood.
Kowarik, I. 1995. On the role of alien species in urban flora and vegetation. In Plant Invasions:
General Aspects and Special Problems (P. Pysˇek, K. Prach, M. Rejmánek and M. Wade, eds.),
pp. 85–103. Amsterdam: SPB Academic Publishing.
Krause, A. 1998. Floras Alltagskleid oder Deutschlands 100 häufigste Pflanzenarten. Natur und
Landschaft, 73: 486–491.
Kühn, I. and Klotz, S. 2002. Floristischer Status und gebietsfremde Arten. In BIOLFLOR Eine
Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland (S. Klotz, I.
Kühn and W. Durka, eds.), pp. 47–56. Bonn: Bundesamt für Naturschutz.
Kühn, I., May, R., Brandl, R. and Klotz, S. 2003. Plant distribution patterns in Germany: will
aliens match natives? Feddes Repertorium, 114: 559–573.
Landsberg, H. 1981. The Urban Climate. New York: Academic Press.
Legendre, P. and Legendre, L. 1998. Numerical Ecology. Amsterdam: Elsevier.
Levine, J.M. and D’Antonio, C.M. 1999. Elton revisited: a review of evidence linking diversity and
invasibility. Oikos, 87: 15–26.
Lichstein, J.W., Simons, T.R., Shriner, S.A. and Franzreb, K.E. 2002. Spatial autocorrelation and
autoregressive models in ecology. Ecol. Monogr., 72: 445–463.
Kühn et al.762
Liu, J., Daily, G.C., Ehrlich, P.R. and Luck, G.W. 2003. Effects of household dynamics on resource
consumption and biodiversity. Nature, 421: 530533.
Löfvenhaft, K., Bjorn, C. and Ihse, M. 2002. Biotope patterns in urban areas: a conceptual
model integrating biodiversity issues in spatial planning. Landscape and Urban Planning,
58: 223240.
Lonsdale, W.M. 1999. Global patterns of plant invasions and the concept of invasibility. Ecology, 80:
15221536.
Loreau, M., Naeem, S., Inchausti, P. et al. 2001. Biodiversity and ecosystem functioning: current
knowledge and future challenges. Science, 294: 804808.
McKinney, M.L. 2002a. Do human activities raise species richness? Contrasting patterns in United
States plants and fishes. Global Ecol. Biogeogr., 11: 343348.
McKinney, M.L. 2002b. Urbanization, biodiversity, and conservation. Bioscience, 52: 883890.
McKinney, M.L. and Lockwood, J.L. 2001. Biotic homogenization: a sequential and selective
process. In Biotic Homogenization (M.L. McKinney and J.L. Lockwood, eds.), pp. 117. New
York: Plenum Publishers.
Mittelbach, G.G., Steiner, C.F., Scheiner, S.M. et al. 2001. What is the observed relationship between
species richness and productivity? Ecology, 82: 23812396.
Morris, D.W. and Kingston, S.R. 2002. Predicting future threats to biodiversity from habitat
selection by humans. Evol. Ecol. Res., 4: 787810.
Niemelä, J. 1999. Ecology and urban planning. Biodivers. Conserv., 8: 119131.
Oke, T.R. 1982. The energetic basis of the urban heat island. Quart. J. R. Meteorol. Soc., 108: 124.
Pickett, S.T.A., Cadenasso, M.L., Grove, J.M. et al. 2001. Urban ecological systems: linking terres-
trial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol.
Syst., 32: 127157.
Pysˇek, P. 1993. Factors affecting the diversity of flora and vegetation in central European
settlements. Vegetatio, 106: 89100.
Pysˇek, P. 1998. Alien and native species in Central European urban floras: a quantitative
comparison. J. Biogeogr., 25: 155163.
Pysˇek, P., Jarosˇik, V. and Kucera, T. 2002a. Patterns of invasion in temperate nature reserves. Biol.
Conserv., 104: 1324.
Pysˇek, P., Sádlo, J. and Mandák, B. 2002b. Catalogue of alien plants of the Czech Republic. Preslia,
74: 97186.
Pysˇek, P., Sádlo, J., Mandák, B. and Jarosˇik, V. 2003. Czech alien flora and the historical pattern of
its formation: what came first to Central Europe? Oecologia, 135: 122130.
Quinn, G.P. and Keough, M.J. 2002. Experimental Design and Data Analysis for Biologists.
Cambridge: Cambridge University Press.
Rosenzweig, M.L. 1995. Species Diversity in Space and Time. Cambridge: Cambridge University
Press.
Rosenzweig, M.L. 2003. Win-Win Ecology. Oxford: Oxford University Press.
Roy, D.B., Hill, M.O. and Rothery, P. 1999. Effects of urban land cover on the local species pool in
Britain. Ecography, 22: 507515.
Savard, J.P.L., Clergeau, P. and Mennechez, G. 2000. Biodiversity concepts and urban ecosystems.
Landscape and Urban Planning, 48: 131142.
Scheiner, S.M., Cox, S.B., Willig, M. et al. 2000. Species richness, speciesarea curves and Simpsons
paradox. Evol. Ecol. Res., 2: 791802.
Schroeder, F.-G. 1969. Zur Klassifizierung der Anthropochoren. Vegetatio, 16: 225238.
Southall, A. 2000. The City in Time and Space. Cambridge: Cambridge University Press.
Stadler, J., Trefflich, A., Klotz, S. and Brandl, R. 2000. Exotic plant species invade diversity hot
spots: the alien flora of northwestern Kenya. Ecography, 23: 169176.
Statistisches Bundesamt. 1997. Daten zur Bodenbedeckung für die Bundesrepublik Deutschland
1: 100,000. Wiesbaden: Statistisches Bundesamt (Map).
The flora of German cities 763
Statistisches Bundesamt. 2001. Statistisches Jahrbuch für die Bundesrepublik Deutschland. Stuttgart:
Kohlhammer.
Stohlgren, T.J., Binkley, D., Chong, G.W. et al. 1999. Exotic plant species invade hot spots of native
plant diversity. Ecol. Monogr., 69: 2546.
Sukopp, H. and Trepl, L. 1987. Extinction and naturalization of plant species as related to ecosystem
structure and function. In Potentials and Limitations of Ecosystem Analysis (E.D. Schulze and
H. Zwölfer, eds.), pp. 245276. Berlin: Springer.
Sukopp, H. and Werner, P. 1983. Urban environments and vegetation. In Mans Impact on Vegetation
(W. Holzner, M.J.A. Werger and I. Ikusima, eds.), pp. 247260. The Hague: Junk Publishers.
Sykora, K.V. 1990. History of the impact of man on the distribution of plant species. In Biological
Invasions in Europe and the Mediterranean Basin (F. di Castri, A.J. Hansen and G. Debussche,
eds.), pp. 3750. Dordrecht: Kluwer Academic Publishers.
Thompson, K. and Jones, A. 1999. Human population density and prediction of local plant
extinction in Britain. Conserv. Biol., 13: 185189.
Trepl, L. 1995. Towards a theory of urban biocoenoses: some hypotheses and research questions.
In Urban Ecology as the Basis of Urban Planning (H. Sukopp, M. Numata and A. Huber, eds.),
pp. 321. The Hague: SPB Academic Publishing.
Waide, R.B., Willig, M.R., Steiner, C.F. et al. 1999. The relationship between productivity and
species richness. Annu. Rev. Ecol. Syst., 30: 257300.
Walters, S.M. 1970. The next twenty years. In The Flora of a Changing Britain (F. Perring, ed.),
pp. 136141. Hampton: Classey.
Whitney, G.G. and Adams, S.D. 1980. Man as a maker of new plant communities. J. Appl. Ecol.,
17: 431448.
Wilson, E.O. 1988. Biodiversity. Washington, DC: National Academy of Science.
Wittig, R. 1991. Ökologie der Großstadtflora. Stuttgart: Fischer.
Wohlgemuth, T. 1998. Modelling floristic species richness on a regional scale: a case study in
Switzerland. Biodivers. Conserv., 7: 159177.
Kühn et al.764
... However, animal-plant networks are persistent in cities (Cruz et al., 2013), and plants that rely on animal dispersal tend to have a more successful regeneration of populations than plants that rely on other strategies for dispersal (Niu et al., 2023). At the same time, most studies show that urban ecosystems tend to be more diverse than natural areas due to the great number of exotic species, microenvironments that can host greater plant diversity, and the fact that cities tend to be built in highly diverse locations (Kühn et al., 2004;Wania et al., 2006). Yet all these studies are performed in urban areas with both human activity and urban infrastructure; therefore, the hypothesis that urban areas are diverse due to the exotic plants and microhabitats and not due to "direct-human" seed dispersal (for example, seeds we throw away as garbage) is yet to be proven. ...
... Therefore, ringtails disperse fewer seeds in urban areas (Table 3); however, diversity and richness tend to be higher in the Faculty, the most urbanized location (Table 4). This is consistent with most previous studies that show a greater diversity of seeds in urban settings (Kühn et al., 2004;Wania et al., 2005), and that ringtails consume more plant species in the cities (Cisneros-Moreno & Martínez-Coronel, 2019). At our location, ringtails disperse fewer seeds in urban areas, but their richness and diversity are higher. ...
... At the same time, all 3 locations share very similar climatic conditions and originally were the same ecosystem. This suggests that differences between treatments are not due to original conditions (although it has been proven in other locations; Kühn et al., 2004). The high diversity of seeds in urbanized areas can be attributed to the great variety of habitats found in an urban area and the exotic species that have already been established there. ...
Article
Full-text available
Seed dispersal by animals is a key ecosystemic process in many environments; however, it could be compromised or increased in urban environments due to changes in the landscape, the introduction of exotic species, and human activities. This article aims to evaluate the role of ringtails (Bassariscus astutus) as seed dispersers in an urban-natural gradient during low human activity due to the COVID-19 pandemic. Ringtail feces were collected in 3 sampling sites with different levels of urbanization (ranging from 100 to 5% of natural vegetation), and the seeds germinated in germination chambers. Twenty species of plants were dispersed by ringtails, more than reported in previous studies. More seeds were dispersed in natural (7.1 seeds per g) than urbanized (3.2 seeds per g) areas, but diversity and richness were higher in urbanized areas. This suggests that urban environments have a greater diversity, and it could be attributed to the microenvironments created by urban infrastructure and the exotic plants that are established in the area.
... The reasons for this particular species richness in cities are diverse. Kühn et al. (2004) demonstrate that cities often developed in regions that are naturally species-rich, as they exhibit high geological diversity. For example, the Ruhr Metropolitan Region is situated at the interface of three different landscape types (Geological Survey 2024b). ...
... Many of the Red List Species originate from declining traditional cultural landscape types, such as semi-natural grasslands or accompanying flora in agricultural fields (Oberdorfer 1983;Verbücheln et al. 2021), and are thus tied to human activity, which is mimicked by cemetery-specific uses, especially nutrient-poor ornamental lawns and burial practices with soil relocation. The proportion of neophytes is linked to the overall species diversity on the cemeteries studied, without observing displacement effects on the indigenous flora, which is corresponding to observations in other studies from urban areas (Deutschewitz et al. 2003;Kühn et al. 2004;Wania et al. 2006). As initially suspected, the proportion of neophytes is reduced on Jewish and historic cemeteries, which might also be an effect of low horticultural activity. ...
Article
Full-text available
Cemeteries are biodiversity hotspots in urban areas, while the drivers of their floristic diversity are poorly understood. We investigated 153 cemeteries in the western Ruhr Metropolitan Region and generated comprehensive species lists of wild plants. Altogether, we found 964 species, equivalent to 53.6% of the flora known from the region. Cluster analysis revealed five distinct cemetery types based on their species composition and prevalence. Subsequently, we used ANOVAs to relate the most effective environmental descriptors identified with a CCA to the five clusters, thus revealing the drivers of species composition. Two of the main clusters had clear regional foci, which could be explained by soil types, while the third main cluster included most of the large cemeteries with many different habitat types, and encompassed sites from the entire study region. Here, the number of species is highest. Two smaller clusters included old historic and Jewish cemeteries, respectively, which were characterized by a smaller number of neophytes and heat indicators. Through the various functional types, the cemeteries contribute to the biodiversity of urban areas like the Ruhr Metropolitan Region and thus counteract the floristic homogenization of cities.
... Low sampling effort is not expected in the mountains since, in the contemporary territory of Poland, mountainous areas were traditionally explored by botanists (for discussion, see Szymura et al., 2023a). Regarding the high SR found in cities, the European cities' flora is naturally species-rich (Kühn et al., 2004), and globally, cities are oen located in areas of high biodiversity; thus, urbanization is relatively higher in areas with high biodiversity (Ives et al., 2016;Kühn et al., 2004;Luck, 2007). e broad-scale positive correlation between human presence and SR suggests that people have preferentially settled and generally flourished in areas of high biodiversity and/or have contributed to it with species introductions and habitat diversification (Pautasso, 2007). ...
... Low sampling effort is not expected in the mountains since, in the contemporary territory of Poland, mountainous areas were traditionally explored by botanists (for discussion, see Szymura et al., 2023a). Regarding the high SR found in cities, the European cities' flora is naturally species-rich (Kühn et al., 2004), and globally, cities are oen located in areas of high biodiversity; thus, urbanization is relatively higher in areas with high biodiversity (Ives et al., 2016;Kühn et al., 2004;Luck, 2007). e broad-scale positive correlation between human presence and SR suggests that people have preferentially settled and generally flourished in areas of high biodiversity and/or have contributed to it with species introductions and habitat diversification (Pautasso, 2007). ...
Article
Full-text available
Knowledge of spatial patterns of species richness (SR) is highly relevant for theoretical research in ecology and the development of conservation plans. In Poland, despite a long tradition of botanical surveys, vascular plant SR has not been mapped, nor have the correlations in richness among different plant species groups been explored at the entire country scale. Here, we used a recently published data set to examine spatial patterns and relationships among the joined SR of vascular plant species, including native species, archaeophytes, neophytes, and species with high conservation value (i.e., red-list species). The basic spatial unit employed was a 10 × 10 km grid from the Atlas of Distribution of Vascular Plants in Poland (ATPOL). We found that SR of native species and archaeophytes, neophytes, and red-list species were positively correlated. The main patterns of SR and the percentage of particular groups in the joined SR were based on three components: (1) gradient of overall SR, (2) invasion level, and (3) peculiarity of flora in some regions resulting from the high number and proportion of rare species that often have high conservation value (red-list species). In general, northeastern Poland was species-poor, while the Carpathian Mountain range, the uplands in southern Poland, and some parts of Wisła River valley had the highest SR concentrations. e location of SR hotspots usually did not overlap with the existing national parks system. The correlations among native SR, high conservation value species, and neophyte SR suggest that biological invasions are among the most important threats to vascular plant diversity in Poland. Finally, despite likely biases in SR assessments, we demonstrated that the presented maps seem to reflect general ecological gradients influencing vascular plant distribution in Poland.
... While it is commonly assumed that alien species inevitably lead to the homogenization of urban floras, it was shown that biotic homogenization is not necessarily the only outcome of biological invasions (McKinney, ECOLOGY 2006;Winter et al., 2010;Lososová et al., 2012;McKinney, 2004;La Sorte and McKinney, 2006;Qian and Ricklefs, 2006;Lososová et al., 2016). In particular, the presence of archaeophyte species (those present in a region before ad 1500, primarily from the Mediterranean Basin and southeastern European steppes) causes additional floral homogenization of European cities, whereas neophytes (introduced after that date which signifies the discovery of the New World and the initiation of rapid changes in human migration, commerce and industry) can have opposing effects, and might increase dissimilarity among cities Lososová et al., 2012;Kühn et al., 2004;Pyšek and Jarošík, 2005;Wilson et al., 2007;Williamson et al., 2009). ...
... According to researchers, this high archaeophyte similarity can be, in part, explained by the long history of their settlement. Some archaeophytes have been naturalized for thousands of years, which means that there has been ample time for them to spread and invade most of the suitable habitats and occupy larger geographical territories (Kühn et al., 2004;Pyšek and Jarošík, 2005;Wilson et al., 2007;Williamson et al., 2009;Lososová et al., 2012). Further, archaeophytes include plant species that have a close association with human activity (Smith, 1986) and are likely to be easily transported and quickly establish populations in areas where human activity is concentration-like in cites. ...
... These distinct abiotic conditions lead to corresponding differences in species diversity. Plant species richness often increases in urban areas, although there is considerable heterogeneity within a single city as some places have many species and others have no plants at all (Kühn et al. 2004;Faeth et al. 2011). Animal species richness tends to decline in urban areas, although abundance may not (Faeth et al. 2011). ...
Article
Full-text available
There are well documented differences in species diversity along urban-rural gradients, but the effects of urbanization on diversity within species are less well known. Nevertheless, intraspecific diversity is an important element of biodiversity that allows for adaptation and can affect community and ecosystem function. The amount of intraspecific diversity may differ along an urbanization gradient if urban areas filter for a very narrow range of traits or, alternatively, if selection is weaker or more spatially variable in urban areas and allows for a broader range of traits. To test the relationship between urbanization, trait means and intraspecific diversity in forested environments, we measured two traits in eight herbaceous understory plant species from nine populations across an urbanization gradient in Baltimore, Maryland, USA. We found that while impervious cover, soil moisture and soil pH were associated with changes in mean trait values of plants in different locations, there was little consistent effect of these abiotic conditions on the amount of intraspecific diversity in traits. This suggests that while urban environments may select for different trait values than non-urban areas, the strength of environmental filtering is similar across the urbanization gradient.
... On the one hand, rural areas, specifically when management is intensified, often have impoverished plant assemblages with a dominance (Carmona et al. 2020) but also lower proportion of non-native species than urban areas (Tew et al. 2021(Tew et al. , 2022. On the other hand, in cities, plant diversity is often significantly enhanced due to both spontaneous and cultivated species including native and non-native species (Kühn et al. 2004 behaviors that maximize their colonies' net yield of energy (Goulson 1999). Thus, the foraging distance will depend on the degree to which the resources are accessible (or isolated) and how evenly distributed they are (Pioltelli et al. 2024). ...
... The affinity of several plant species toward urban areas has been shown by a number of authors. For example, an urbanity scale (i.e., tendency to occur in cities) ranging from urbanophilic to urbanophobic depending on the species presences in cities has been developed by Klotz et al. (2002) and Kühn et al. (2004) for 3,659 taxa of the European flora, and by Hill et al. (2002) for the flora of central England. However, if we want to improve our knowledge of urban plant ecology, we should not consider cities as homogeneous entities, but rather as a mosaic of more or less distinct habitats with varying levels of human impact; for example, residential areas of diverse types and densities, parks, industrial and agricultural areas. ...
Article
Question Specialization refers to the degree of niche breadth of a species. Generalist species are able to persist in a broad range of habitats, whereas specialist species are adapted to a restricted range of environmental conditions. Cities host a great heterogeneity of habitats with variable degrees of human impact. This is generally reflected in the functional composition of the urban floras. The aim of our study is thus to explore whether the degree of functional specialization of urban plant assemblages varies among habitats subject to different degrees of human impact and disturbance regimes. Location Thirty‐two cities in Central Europe with more than 100,000 inhabitants. Methods We used a data set containing plots of urban floras sampled in seven habitat types within each city: historical city square, boulevard, residential area with a compact building pattern, residential area with an open building pattern, city park, early successional site, and mid‐successional site. These habitats differ in the level of human impact, ranging from moderately urbanized suburban habitats to the most urbanized habitats in the city center. For each plot, we calculated a recently introduced specialization index, which is based on the application of concentration measures to Grime's community‐level mean CSR strategies. Results Along the urbanization gradient, from peripheral to central habitats, we observed a marked intensification in the degree of functional specialization of urban habitats, which is primarily attributable to an increase in the selection of ruderal species. Conclusions Urban ecosystems are characterized by a wide variety of human impacts that affect the functioning of the resident species. Considering cities as heterogeneous systems is thus of paramount importance for understanding the mechanisms that drive the assembly of urban floras.
... Increasing vegetation cover and reduced garden complexity, together with housing density, reduced the densities of native and, to a lesser extent, nonnative birds, except for the house sparrow, which responded positively to increased housing density (van Heezik & Adams 2016). In Germany, geology affected the richness of urban nonnative plant species indirectly, as this factor was associated with the position of the city, i.e., where the cities were developed (Kühn et al. 2004). Overall, city size and degree of urbanization (with associated land-use change and propagule pressure) increase the richness and diversity of nonnative species. ...
Article
The globalization of trade and increased human mobility have facilitated the introduction and spread of nonnative species, posing significant threats to biodiversity and human well-being. As centers of global trade and human populations, cities are foci for the introduction, establishment, and spread of nonnative species. We present a global synthesis of urban characteristics that drive biological invasions within and across cities, focusing on four axes: ( a ) connectivity, ( b ) physical properties, ( c ) culture and socioeconomics, and ( d ) biogeography and climate. Urban characteristics such as increased connectivity within and among cities, city size and age, and wealth emerged as important drivers of nonnative species diversity and spread, while the relative importance of biogeographic and climate drivers varied considerably. Elaborating how these characteristics shape biological invasions in cities is crucial for designing and implementing strategies to mitigate the impacts of invasions on ecological systems and human well-being.
Article
Full-text available
A key issue in ecology is how patterns of species diversity differ as a function of scale. The scaling function is the species-area curve. The form of the species-area curve results from patterns of environmental heterogeneity and species dispersal, and may be system-specific. A central concern is how, for a given set of species, the species-area curve varies with respect to a third variable, such as latitude or productivity. Critical is whether the relationship is scale-invariant (i.e. the species-area curves for different levels of the third variable are parallel), rank-invariant (i.e. the curves are non-parallel, but non-crossing within the scales of interest) or neither, in which case the qualitative relationship is scale-dependent. This recognition is critical for the development and testing of theories explaining patterns of species richness because different theories have mechanistic bases at different scales of action. Scale includes four attributes: sample-unit, grain, focus and extent. Focus is newly defined here. Distinguishing among these attributes is a key step in identifying the probable scale(s) at which ecological processes determine patterns.
Book
This ambitious book treats urbanisation and urbanism all over the world, and from the earliest times to the present. Aidan Southall, a pioneer in the study of African cities, discusses the urban centres of ancient Sumeria, Greece and Rome, as well as medieval European cities, Chinese, Japanese, Islamic and Indic cities, colonial cities, and the great metropolises of the twentieth century. Drawing on this historical and comparative perspective, he offers a fresh analysis of world urbanisation in the contemporary period of globalisation. The study emphasises the enduring paradox of the city, which juxtaposes splendid cultural productions with the poverty and deprivation of the majority.
Article
Species numbers of 13 settlements in the temperate phyto-geographical zone of Europe were compared. -from Author
Chapter
Most ecosystem studies concern themselves only or for the most part with the current status of ecosystems and are moreover based on the search for general principles. The main goal of such studies is to formulate general statements, termed rules or laws, about the structure and function of ecosystems. If possible, these statements are made in the form of “if x, then y” relations. Biology, however, does not concern itself with perpetually valid “absolute phenomena”. Ernst Haeckel was probably the first to consistently point out that some biological disciplines are historical sciences (1877, according to Mayr 1984). This is particularly true of ecology. Ecology focuses on the “concrete and abundant spectrum of natural phenomena” (Friederichs 1957), its goal is to comprehend the objects under study not in isolation, but rather within the context of ail their interrelationships, as “real” nature, and not as an experimentally purified form.
Chapter
This chapter addresses heterogeneity in the context of scale. Scale is emerging as one of the critical problems that must be adequately considered if different ecological studies are to be either compared in a corroboration or contrasted in a refutation. Some argument in the ecological literature is misdirected because the contentions are differently scaled and so are not competitive (e.g., Belsky, 1986, 1987 versus McNaughton, 1985,1986, as discussed in Brown and Allen, 1989). Disparately scaled ecological situations cannot be compared in any simple way, even if superficially it appears that it is the same community or site that is being addressed.