Nasal Acai Polysaccharides Potentiate Innate Immunity to Protect against Pulmonary Francisella tularensis and Burkholderia pseudomallei Infections

Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
PLoS Pathogens (Impact Factor: 7.56). 03/2012; 8(3):e1002587. DOI: 10.1371/journal.ppat.1002587
Source: PubMed


Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.

Download full-text


Available from: Jerod Skyberg
  • Source
    • "Skyberg et al. (2012) reported that a natural polysaccharide extract isolated from Acai berry (Acai PS, derived from the berry of the palm tree Euterpe oleracea in South America) enhanced the clearance of F. tularensis LVS and Schu4 from human macrophages when co-cultured with autologous natural killer cells. Impaired replication of F. tularensis in human macrophages was related to increased production of IFN-gamma by NK cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibiotic treatment of tularaemia is based on a few drugs, including the fluoroquinolones, the tetracyclines and the aminoglycosides. Because no effective and safe vaccine is currently available, tularaemia prophylaxis following proven exposure to F. tularensis also relies on administration of antibiotics. A number of reasons make it necessary to search for new therapeutic alternatives: the potential toxicity of first-line drugs, especially in children and pregnant women; a high rate of treatment relapses and failures, especially for severe and/or suppurated forms of the disease; and the possible use of antibiotic-resistant strains in the context of a biological threat. This review presents novel therapeutic approaches that have been explored in recent years to improve tularaemia patients’ management and prognosis. First, the activities of newly available antibiotic compounds were evaluated against F. tularensis, including tigecycline (a glycylcycline), ketolides (telithromycin and cethromycin) and fluoroquinolones (moxifloxacin, gatifloxacin, trovafloxacin and grepafloxacin). The liposome delivery of some antibiotics was evaluated. The effect of antimicrobial peptides against F. tularensis was also considered. Other drugs were evaluated for their ability to suppress the intracellular multiplication of F. tularensis. The effects of the modulation of the innate immune response (especially via TLR receptors) on the course of F. tularensis infection were characterized. Another approach was the administration of specific antibodies to induce passive resistance to F. tularensis infection. All of these studies highlight the need to develop new therapeutic strategies to improve the management of patients with tularaemia. Many possibilities exist, some unexplored. Moreover, it is likely that new therapeutic alternatives that are effective against this intracellular pathogen could be, at least partially, extrapolated to other human pathogens.
    Full-text · Article · Mar 2014 · Frontiers in Cellular and Infection Microbiology
  • Source
    • "Innate lymphocytes, such as NK cells and γδ T cells, play an important role in host defense against cancer and various pathogens, and enhancing the activity of these cells is an attractive option for immunotherapy [8]–[10]. Results by our group and others have shown that some nutritional supplements are useful sources of novel agonists for innate lymphocytes and that the use of these supplements may represent a novel strategy to enhance the activity of these cells [4]–[7], [11]–[12]. For example, alkylamines from tea, apples, and wine, polysaccharides from Acai fruit and Funtumia elastica bark, and other plant components have been shown to activate and enhance the proliferation of γδ T cells [13]–[16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oenothein B is a polyphenol isolated from Epilobium angustifolium and other plant sources, which has been reported to exhibit immunomodulatory properties. Oenothein B is known to activate myeloid cells and induce the production of IL-1 and other cytokines. However, its effects on lymphocytes are unknown. In this report, we show that oenothein B stimulated innate lymphocytes, including bovine and human γδ T cells and NK cells, resulting in either increased CD25 and/or CD69 expression. We also demonstrate that oenothein B enhanced the production of interferon-γ (IFNγ) by bovine and human NK cells alone and in combination with interleukin-18 (IL-18), a response not observed with other commonly studied polyphenols. Furthermore, we demonstrate that oenothein B enhanced the production of IFNγ by human T cells. Since IFNγ contributes to antitumor, antibacterial, and antiviral cell responses, these data suggest an additional mechanism that could account, at least in part, for the immune enhancing properties of oenothein B.
    Full-text · Article · Nov 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Constant overproduction of pro-inflammatory molecules leads to chronic inflammation. Unlike acute inflammation, which is essential for healing, chronic inflammation can delay healing and, if left unchecked, contribute to a host of diseases. There is growing evidence that some dietary factors can play important roles in maintaining health and even reversing the progression of chronic diseases, with anti-inflammatory effects as important underlying mechanism. Such findings add to the body of evidence that certain dietary components, including polyphenols and other types of compounds, found in various dietary factors including fruits, berries, vegetables, nuts, whole grains, and foods of marine origin, can play an important role in attenuating and mitigating chronic pro-inflammatory processes associated with chronic diseases.
    Full-text · Article · Apr 2012 · Journal of Agricultural and Food Chemistry
Show more