Novel mutator mutants of E-coli nrdAB ribonucleotide reductase: Insight into allosteric regulation and control of mutation rates

Laboratory of Molecular Genetics, National Institute of Environmental and Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
DNA repair (Impact Factor: 3.11). 03/2012; 11(5):480-7. DOI: 10.1016/j.dnarep.2012.02.001
Source: PubMed


Ribonucleotide reductase (RNR) is the enzyme critically responsible for the production of the 5'-deoxynucleoside-triphosphates (dNTPs), the direct precursors for DNA synthesis. The dNTP levels are tightly controlled to permit high efficiency and fidelity of DNA synthesis. Much of this control occurs at the level of the RNR by feedback processes, but a detailed understanding of these mechanisms is still lacking. Using a genetic approach in the bacterium Escherichia coli, a paradigm for the class Ia RNRs, we isolated 23 novel RNR mutants displaying elevated mutation rates along with altered dNTP levels. The responsible amino-acid substitutions in RNR reside in three different regions: (i) the (d)ATP-binding activity domain, (ii) a novel region in the small subunit adjacent to the activity domain, and (iii) the dNTP-binding specificity site, several of which are associated with different dNTP pool alterations and different mutational outcomes. These mutants provide new insight into the precise mechanisms by which RNR is regulated and how dNTP pool disturbances resulting from defects in RNR can lead to increased mutation.

Download full-text


Available from: Rachelle J Bienstock, Dec 18, 2013
  • Source
    • "As the mismatch extension step competes directly with the removal of the erroneous base by proofreading, elevated dNTPs can be mutagenic through this mechanism. When the specific changes in the dNTP pool mutants are known, clear predictions can be made as to the mispairings that will be promoted [19] [21]. These predictions can then be used to " mark " the strands and to verify the earlier conclusion that lagging strand replication is more accurate than leading-strand replication. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The fidelity with which organisms replicate their chromosomal DNA is of considerable interest. Detailed studies in the bacterium Escherichia coli have indicated that the fidelity of leading- and lagging-strand DNA replication is not the same, based on experiments in which the orientation of certain mutational targets on the chromosome was inverted relative to the movement of the replication fork: different mutation rates for several base-pair substitutions were observed depending on this orientation. While these experiments are indicative of differential replication fidelity in the two strands, a conclusion whether leading or lagging strand is the more accurate depends on knowledge of the primary mispairing error responsible for the base substitutions in question. A broad analysis of in vitro base-pairing preferences of DNA polymerases led us to propose that lagging-strand is the more accurate strand. In the present work, we present more direct in vivo evidence in support of this proposal. We determine the orientation dependence of mutant frequencies in ndk and dcd strains, which carry defined dNTP pool alterations. As these pool alterations lead to predictable effects on the array of possible mispairing errors, they mark the strands in which the observed errors occur. The combined results support the proposed higher accuracy of lagging-strand replication in E. coli.
    Full-text · Article · Nov 2013 · Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accuracy of DNA synthesis depends on the accuracy of the polymerase as well as the quality and concentration(s) of the available 5'-deoxynucleoside-triphosphate DNA precursors (dNTPs). The relationships between dNTPs and error rates have been studied in vitro, but only limited insights exist into these correlations during in vivo replication. We have investigated this issue in the bacterium Escherichia coli by analyzing the mutational properties of dcd and ndk strains. These strains, defective in dCTP deaminase and nucleoside diphosphate kinase, respectively, are characterized by both disturbances of dNTP pools and a mutator phenotype. ndk strains have been studied before, but were included in this study, as controversies exist regarding the source of its mutator phenotype. We show that dcd strains suffer from increased intracellular levels of dCTP (4-fold) and reduced levels of dGTP (2-fold), while displaying, as measured using a set of lacZ reversion markers in a mismatch-repair defective (mutL) background, a strong mutator effect for G·C→T·A and A·T→T·A transversions (27- and 42-fold enhancement, respectively). In contrast, ndk strains possess a lowered dATP level (4-fold) and modestly enhanced dCTP level (2-fold), while its mutator effect is specific for just the A·T→T·A transversions. The two strains also display differential mutability for rifampicin-resistant mutants. Overall, our analysis reveals for both strains a satisfactory correlation between dNTP pool alterations and the replication error rates, and also suggests that a minimal explanation for the ndk mutator does not require assumptions beyond the predicted effect of the dNTP pools.
    No preview · Article · Dec 2012 · DNA repair
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to their corresponding deoxyribonucleotides. They are formed through a radical-induced reduction of ribonucleotides. Three classes of RNR generate the catalytically active site thiyl radical using different co-factors: a tyrosyl-radical in most cases (class I), homolytic cleavage of deoxyadenosyl-cobalamin (class II), or a glycyl-radical (class III), respectively. Class I RNR has a larger subunit R1/R1E containing the active site and a smaller subunit R2/R2F with (the thiyl-generating power from) a tyrosyl radical or an oxidized iron-manganese cluster and is reviewed herein. Class I is divided into subclasses, Ia (tyrosyl-radical and di-iron-oxygen cluster), Ib (tyrosyl-radical and di-manganese-oxygen cluster) and Ic (an iron-manganese cluster). Presented here is an overview of recent developments in the understanding of class I RNR: metal-ion cluster identities, novel 3D structures, magnetic-optical properties, and reaction mechanisms. It became clear in the last years that the primitive bacterial RNR sources can utilize different metal-ion clusters to fulfil function. Within class Ia that includes members from eukaryotes (mammalians, fish) and some viruses species, the presence of hydrogen bonding interactions from water at different distances with the tyrosyl-radical site can occur. This demonstrates a large versatility in the mechanism to form the thiyl radical.
    Full-text · Article · Jan 2013 · Coordination Chemistry Reviews
Show more