Transcription control by long non-coding RNAs

Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
Transcription 03/2012; 3(2):78-86. DOI: 10.4161/trns.19349
Source: PubMed


Non-coding RNAs have been found to regulate many cellular processes and thus expand the functional genetic repertoire contained within the genome. With the recent advent of genomic tools, it is now evident that these RNA molecules play central regulatory roles in many transcriptional programs. Here we discuss how they are targeted to promoters in several cases and how they operate at specific points in the transcription cycle to precisely control gene expression.

Download full-text


Available from: Iván D'Orso, Oct 28, 2014
  • Source
    • "This is particularly important toward the future application of epigenetics in novel therapeutic strategies for diseases that currently have no treatment and epigenetic disorders that are caused by environmental insults. In addition to modification in chromatin structure, histone variants, histone PTM, and non-coding RNAs (ncRNA) can further decrease or inhibit gene expression, adding to the diversity of features, which constitute the epigenome (Delcuve et al., 2009; Malecova and Morris, 2010; Rastegar et al., 2011; Faust et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic changes occur throughout life from embryonic development into adulthood. This results in the timely expression of developmentally important genes, determining the morphology and identity of different cell types and tissues within the body. Epigenetics regulate gene expression and cellular morphology through multiple mechanisms without alteration in the underlying DNA sequences. Different epigenetic mechanisms include chromatin condensation, post-translational modification of histone proteins, DNA cytosine marks, and the activity of non-coding RNA molecules. Epigenetics play key roles in development, stem cell differentiation, and have high impact in human disease. In this review, we will discuss our current knowledge about these epigenetic mechanisms, with a focus on histone and DNA marks. We will then talk about the genetics and epigenetics of embryonic stem cell self-renewal and differentiation into neural stem cells, and further into specific neuronal cell types.
    Full-text · Article · May 2012 · Frontiers in Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conventional view of gene regulation in biology has centered around protein-coding genes via the central dogma of DNAmRNAprotein. The discovery of thousands of long non-coding RNAs (lncRNAs) has certainly changed our view of the complexity of mammalian genomes and transcriptomes, as well as many other aspects of biology including transcriptional and posttranscriptional regulation of gene expression. Accumulating reports of misregulated lncRNA expression across numerous cancer types suggest that aberrant lncRNA expression may be a major contributor to tumorigenesis. Here, we summarize recent data about the biological characteristics of lncRNAs in cancer pathways. These include examples with a wide range of molecular mechanisms involved in gene regulation. We also consider the medical implications, and discuss how lncRNAs can be used for cancer diagnosis and prognosis, and serve as potential therapeutic targets. As more examples of regulation by lncRNA are uncovered, one might predict that the large transcripts will eventually rival small RNAs and proteins in their versatility as regulators of genetic information.Modern Pathology advance online publication, 21 September 2012; doi:10.1038/modpathol.2012.160.
    Preview · Article · Sep 2012 · Modern Pathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factors regulate eukaryotic RNA polymerase II (Pol II) activity by assembling and remodeling complexes at multiple steps in the transcription cycle. In HIV, we previously proposed a two-step model where the viral Tat protein first preassembles at the promoter with an inactive P-TEFb:7SK snRNP complex and later transfers P-TEFb to TAR on the nascent transcript, displacing the inhibitory snRNP and resulting in Pol II phosphorylation and stimulation of elongation. It is unknown how the Tat:P-TEFb complex transitions to TAR to activate the P-TEFb kinase. Here, we show that P-TEFb artificially recruited to the nascent transcript is not competent for transcription but rather remains inactive due to its assembly with the 7SK snRNP. Tat supplied in trans is able to displace the kinase inhibitor Hexim1 from the snRNP and activate P-TEFb, thereby uncoupling Tat requirements for kinase activation and TAR binding. By combining comprehensive mutagenesis of Tat with multiple cell-based reporter assays that probe the activity of Tat in different arrangements, we genetically defined a transition step in which preassembled Tat:P-TEFb complexes switch to TAR. We propose that a conserved network of residues in Tat has evolved to control this transition and thereby switch the host elongation machinery to viral transcription.
    Full-text · Article · Dec 2012 · Molecular and Cellular Biology
Show more