The Nitric Oxide-Cyclic GMP Pathway Regulates FoxO and Alters Dopaminergic Neuron Survival in Drosophila

Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Germany
PLoS ONE (Impact Factor: 3.23). 02/2012; 7(2):e30958. DOI: 10.1371/journal.pone.0030958
Source: PubMed


Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA) neurodegeneration in a Drosophila model of Parkinson's disease (PD), in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP)-dependent kinase II (cGKII) also phosphorylates FoxO at the same residue as LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1 S319A) suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) also increased FoxO's activity, whereas the administration of a NOS inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD.

Download full-text


Available from: Hasegawa Kazuko
  • Source
    • "brain, trachea and leg discs) and thus caution should be taken in the interpretation of certain pathogenic phenotypes, such as lethality and behavioral defects [27]. In contrast, for eye development studies, it is widely used and generally accepted as an eye-specific driver able to overexpress or downregulate (through RNAi) native proteins of our preference [13], [28], [29]. Similarly, the P{GawB}BxMS1096 driver examined here represents a valuable genetic tool for reliably dissecting the mechanisms of wing morphogenesis, as it has been previously shown by a number of different groups [30]–[32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}Bx(MS1096) genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly's eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing's, but not eye's, morphogenetic organization and architecture. However, Atg9 proved indispensable for the maintenance of structural integrity of adult wings in aged flies. In toto, our findings clearly demonstrate the gene-specific fundamental contribution of proteasome, but not autophagy, in invertebrate eye and wing organ development.
    Full-text · Article · Nov 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The success of insects is in large part due to their ability to survive environmental stress, including heat, cold, and dehydration. Insects are also exposed to infection, osmotic or oxidative stress, and to xenobiotics or toxins. The molecular mechanisms of stress sensing and response have been widely investigated in mammalian cell lines, and the area of stress research is now so vast to be beyond the scope of a single review article. However, the mechanisms by which stress inputs to the organism are sensed and integrated at the tissue and cellular level are less well understood. Increasingly, common molecular events between immune and other stress responses are observed in vivo; and much of this work stems of efforts in insect molecular science and physiology. We describe here the current knowledge in the area of immune and stress signalling and response at the level of the organism, tissue and cell, focussing on a key epithelial tissue in insects, the Malpighian tubule, and drawing together the known pathways that modulate responses to different stress insults. The tubules are critical for insect survival and are increasingly implicated in responses to multiple and distinct stress inputs. Importantly, as tubule function is central to survival, they are potentially key targets for insect control, which will be facilitated by increased understanding of the complexities of stress signalling in the organism.
    Full-text · Article · Jan 2012 · Journal of insect physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.
    Full-text · Article · Jun 2012 · PLoS Genetics
Show more