Melatonin and mitochondrial dysfunction in the central nervous system

Pontificia Universidad Católica Argentina, Facultad de Ciencias Médicas, 1107 Buenos Aires, Argentina
Hormones and Behavior (Impact Factor: 4.63). 02/2012; 63(2). DOI: 10.1016/j.yhbeh.2012.02.020
Source: PubMed


Cell death and survival are critical events for neurodegeneration, mitochondria being increasingly seen as important determinants of both. Mitochondrial dysfunction is considered a major causative factor in Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity and NO production, and disrupted electron transport system and mitochondrial permeability transition, have all been involved in impaired mitochondrial function. Melatonin, the major secretory product of the pineal gland, is an antioxidant and an effective protector of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective to prevent oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of AD, PD and HD. These effects are seen at doses 2-3 orders of magnitude higher than those required to affect sleep and circadian rhythms, both conspicuous targets of melatonin action. Melatonin is selectively taken up by mitochondria, a function not shared by other antioxidants. A limited number of clinical studies indicate that melatonin can improve sleep and circadian rhythm disruption in PD and AD patients. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50-100mg/day are needed to assess its therapeutic validity in neurodegenerative disorders.

Download full-text


Available from: Pablo Antonio Scacchi Bernasconi, Jul 14, 2014
  • Source
    • "The indoleamine melatonin (N-acetyl-5-methoxytryptamine) is synthesized in the pinealocytes, located in the pineal gland (Epiphysis cerebri) of the mammalian brain. In addition to its role as a chronobiotic in mammals, melatonin is an antioxidant and an effective protector of mitochondrial bioenergetics [69]. Melatonin protects from Aβ toxicity, especially at the mitochondrial level [70,71], and is used as an antioxidant in AD patients [72]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular pathogenic mechanisms of prion diseases are far from clear. Genomic analyses have revealed genetic biomarkers potentially involved in prion neuropathology in naturally scrapie-infected sheep, a good animal model of infectious prionopathies. However, these biomarkers must be validated in independent studies at different stages of the disease. The gene and protein expression profiles and protein distribution of six potential genetic biomarkers (i.e., CAPN6, COL1A2, COL3A1, GALA1, MT2A and MTNR1B) are presented here for both the early and terminal stages of scrapie in five different brain regions. Gene transcription changes were confirmed in the medulla oblongata, and the expression profiles were generally similar in other central nervous system regions. The changes were more substantial in clinical animals compared to preclinical animals. The expression of the CAPN6 protein increased in the spinal cord and cerebellum of the clinical and preclinical brains. The distribution of the GALA1 was identified in glial cells from the cerebellum of scrapie-infected animals, GALA1 protein expression was increased in clinical animals in the majority of regions, and the increase of MT2A was in agreement with previous reports. The downregulation of MTNR1B was especially marked in the Purkinje cells. Finally, although collagen genes were downregulated the protein immunostaining did not reveal significant changes between the scrapie-infected and control animals. In conclusion, this study of gene transcription and protein expression and distribution confirm CAPN6, GALA1, MTNR1B and MT2A as potential targets for further prion disease research.
    Full-text · Article · Mar 2013 · Veterinary Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease is a progressive neurological disorder that starts insidiously with motor, cognitive or psychiatric disturbance, and progresses through a distressing range of symptoms to end with a devastating loss of function, both motor and executive. There is a growing awareness that, in addition to cognitive and psychiatric symptoms, there are other important non-motor symptoms in HD, including sleep and circadian abnormalities. It is not clear if sleep-wake changes are caused directly by HD gene-related pathology, or if they are simply a consequence of having a neurodegenerative disease. From a patient point of view, the answer is irrelevant, since sleep and circadian disturbances are deleterious to good daily living in neurologically normal people. The assumption should be that, at the very least, sleep and/or circadian disturbance in HD patients will contribute to their symptoms. At worst, they may contribute to the progressive decline in HD. Here I review the state of our understanding of sleep and circadian abnormalities in HD. I also outline a set of simple rules that can be followed to improve the chances of a good night's sleep, since preventing any 'preventable' symptoms is the a logical first step in treating disease. The long-term impact of sleep disruption in HD is unknown. There have been no large-scale systematic studies of in sleep in HD. Furthermore, there has never been a study of the efficacy of pharmaceuticals that are typically used to treat sleep deficits in HD patients. Thus treatment of sleep disturbance in HD is necessarily empirical. A better understanding of the relationship between sleep/circadian abnormalities and HD pathology is needed, if treatment of this aspect of HD is to be optimized.
    No preview · Article · Oct 2012 · Experimental Neurology
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a vast literature dealing with various aspects of the circadian clock. This review provides examples of the multifaceted nature, of namely redox, oxidative stress, melatonin, antioxidants, nitric oxide, hypoxia, anesthetics, cortisol and cocaine. The redox and oxidative stress features reflect the involvement of electron transfer and radical species, which can exert either beneficial or deleterious effects. The harmful aspects can be countered by antioxidants. Melatonin is a brain hormone that is known to play a widespread role in the biochemistry of the circadian clock. Nitric oxide is widespread in the human body and plays a variety of roles. Hypoxia has been broadly discussed in relation to circadian rhythm, e.g., in high altitude flight. The anesthetic topic completes the list.
    No preview · Article · Jan 2013 · Current Chemical Biology
Show more