Triggering Fbw7-Mediated Proteasomal Degradation of c-Myc by Oridonin Induces Cell Growth Inhibition and Apoptosis

ArticleinMolecular Cancer Therapeutics 11(5):1155-65 · March 2012with15 Reads
DOI: 10.1158/1535-7163.MCT-12-0066 · Source: PubMed
The transcription factor c-Myc is important in cell fate decisions and is frequently overexpressed in cancer cells, making it an attractive therapeutic target. Natural compounds are among the current strategies aimed at targeting c-Myc, but their modes of action still need to be characterized. To explore the mechanisms underlying the anticancer activity of a natural diterpenoid, oridonin, we conducted miRNA expression profiling and statistical analyses that strongly suggested that c-Myc was a potential molecular target of oridonin. Furthermore, experimental data showed that oridonin significantly reduced c-Myc protein levels in vitro and in vivo and that this reduction was mediated by the ubiquitin-proteasome system. Fbw7, a component of the ubiquitin-proteasome system and an E3 ubiquitin ligase of c-Myc, was upregulated rapidly in K562 cells and other leukemia and lymphoma cells, resulting in the rapid turnover of c-Myc. In cell lines harboring mutations in the WD domain of Fbw7, the degradation of c-Myc induced by oridonin was attenuated during short-term treatment. GSK-3, an Fbw7 priming kinase, was also activated by oridonin, along with an increase in T58-phosphorylated c-Myc. Furthermore, the knockdown of Fbw7 or the forced expression of stable c-Myc resulted in reduced sensitization to oridonin-induced apoptosis. Our observations help to clarify the anticancer mechanisms of oridonin and shed light on the application of this natural compound as an Fbw7-c-Myc pathway targeting agent in cancer treatment.
    • "However, the problem is how to find specific compounds to restore only FBW7 activity, but not affecting other signaling pathways without causing unwanted side effects. Recently, natural compound oridonin has been reported to activate FBW7 E3 ubiquitin ligase, leading to inhibition of c-Myc pathway [12] [38]. "
    [Show abstract] [Hide abstract] ABSTRACT: Melanomas are highly proliferative and invasive, and are most frequently metastatic. Despite many advances in cancer treatment over the last several decades, the prognosis for patients with advanced melanoma remains poor. New treatment methods and strategies are necessary. The main hallmark of cancer is uncontrolled cellular proliferation with alterations in the expression of proteins. Ubiquitin and ubiquitin-related proteins posttranslationally modify proteins and thereby alter their functions. The ubiquitination process is involved in various physiological responses, including cell growth, cell death, and DNA damage repair. E3 ligases, the most specific enzymes of ubiquitination system, participate in the turnover of many key regulatory proteins and in the development of cancer. E3 ligases are of interest as drug targets for their ability to regulate proteins stability and functions. Compared to the general proteasome inhibitor bortezomib, which blocks the entire protein degradation, drugs that target a particular E3 ligase are expected to have better selectivity with less associated toxicity. Components of different E3 ligases complexes (FBW7, MDM2, RBX1/ROC1, RBX2/ROC2, cullins and many others) are known as oncogenes or tumor suppressors in melanomagenesis. These proteins participate in regulation of different cellular pathways and such important proteins in cancer development as p53 and Notch. In this review we summarized published data on the role of known E3 ligases in the development of melanoma and discuss the inhibitors of E3 ligases as a novel approach for the treatment of malignant melanomas. Copyright © 2015 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
    Full-text · Article · Jan 2015
    • "However, a critical concern is how to design and find specific compounds to restore only FBW7 activity, but not affecting other signaling pathways without causing unwanted side effects. Recently, natural compound oridonin has been reported to activate FBW7 E3 ubiquitin ligase, leading to inhibition of c-Myc pathway [100]. Obviously, the more knowledge we gain in terms of the upstream regulator and downstream targets of FBW7, the better we can achieve more targeted activation of the FBW7 signaling pathway to suppress tumorigenesis. "
    [Show abstract] [Hide abstract] ABSTRACT: FBW7 (F-box and WD repeat domain-containing 7) has been characterized as an onco-suppressor protein in human cancers. Recent studies have also shown that FBW7 exerts its anti-tumor function primarily by promoting the degradation of various oncoproteins, through which FBW7 regulates cellular proliferation, differentiation and causes genetic instability. In this review, we will discuss the role of FBW7 downstream substrates and how dysregulation of Fbw7-mediated proteolysis of these substrates contributes to tumorigenesis. Additionally, we will also summarize the currently available various Fbw7-knockout mouse models that support Fbw7 as a tumor suppressor gene in the development and progression of human malignancies.
    Full-text · Article · May 2012
  • [Show abstract] [Hide abstract] ABSTRACT: cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
    Full-text · Article · Aug 2012
Show more