Highly Active Pt3Pb and Core-Shell Pt3Pb-Pt Electrocatalysts for Formic Acid Oxidation

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
ACS Nano (Impact Factor: 12.88). 03/2012; 6(3):2818-25. DOI: 10.1021/nn3003373
Source: PubMed


Formic acid is a promising chemical fuel for fuel cell applications. However, due to the dominance of the indirect reaction pathway and strong poisoning effects, the development of direct formic acid fuel cells has been impeded by the low activity of existing electrocatalysts at desirable operating voltage. We report the first synthesis of Pt(3)Pb nanocrystals through solution phase synthesis and show they are highly efficient formic acid oxidation electrocatalysts. The activity can be further improved by manipulating the Pt(3)Pb-Pt core-shell structure. Combined experimental and theoretical studies suggest that the high activity from Pt(3)Pb and the Pt-Pb core-shell nanocrystals results from the elimination of CO poisoning and decreased barriers for the dehydrogenation steps. Therefore, the Pt(3)Pb and Pt-Pb core-shell nanocrystals can improve the performance of direct formic acid fuel cells at desired operating voltage to enable their practical application.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the first synthesis of highly monodisperse Pt(3)Zn nanocrystals (NCs). Shape-controlled synthesis generates cubic and spherical Pt-Zn NCs. Reaction temperature is the key to incorporate Zn into Pt, even in the absence of a strong reducing agent. The Pt-Zn NCs are active toward methanol oxidation, with the spherical NCs exhibiting higher activity than the cubic NCs. The Pt-Zn alloy phase can be transformed into the Pt(3)Zn intermetallic phase, upon annealing. The intermetallic Pt(3)Zn shows better performance than the alloy phase Pt-Zn. Besides the activity toward methanol oxidation, Pt-Zn NCs show excellent poisoning tolerance. With activities comparable to the commercial Pt catalyst, enhanced poisoning tolerance and lower cost, Pt-Zn and Pt(3)Zn NCs are a promising new family of catalysts for direct methanol fuel cells.
    No preview · Article · May 2012 · ACS Nano
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bimetallic nanomaterials have raised more and more significant concern from worldwide researchers in recent years because their new physical and chemical properties derived from synergistic effects between the two metals are highly desirable for specific technological applications, especially for catalytic applications. This review article provides an overview of recent developments in synthesis and properties of bimetallic nanomaterials. First, we summarize recent contributions on developing strategies for the controllable synthesis of bimetallic nanomaterials with various architectures including crown-jewel structure, hollow structure, heterostructure, core-shell structure, alloyed structure and porous structure. Then, we discuss how the microstructural parameters such as surface structure, composition, size, and morphology (crystal facet) influence catalytic properties of bimetallic nanomaterials. Finally, we conclude with our personal perspectives of future research in bimetallic nanomaterials. (c) 2012 Elsevier Ltd. All rights reserved.
    Full-text · Article · Oct 2012 · Nano Today
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural control of branched nanocrystals allows tuning two parameters that are critical to their catalytic activity-the surface-to-volume ratio, and the number of atomic steps, ledges, and kinks on surface. In this work, we have developed a simple synthetic system that allows tailoring the numbers of branches in Pt nanocrystals by tuning the concentration of additional HCl. In the synthesis, HCl plays triple functions in tuning branched structures via oxidative etching: (i) the crystallinity of seeds and nanocrystals; (ii) the number of {111} or {100} faces provided for growth sites; (iii) the supply kinetics of freshly formed Pt atoms in solution. As a result, tunable Pt branched structures-tripods, tetrapods, hexapods, and octopods with identical chemical environment-can be rationally synthesized in a single system by simply altering the etching strength. The controllability in branched structures enables to reveal that their electrocatalytic performance can be optimized by constructing complex structures. Among various branched structures, Pt octopods exhibit particularly high activity in formic acid oxidation as compared with their counterparts and commercial Pt/C catalysts. It is anticipated that this work will open a door to design more complex nanostructures and to achieve specific functions for various applications.
    Full-text · Article · Oct 2012 · ACS Nano
Show more