Nerve injuries sustained during warfare: Part I - Epidemiology

War Nerve Injury Clinic, Headley Court, Epsom, Surrey KT18 6JW, UK.
The Bone & Joint Journal (Impact Factor: 3.31). 04/2012; 94(4):523-8. DOI: 10.1302/0301-620X.94B4.28483
Source: PubMed


We describe 261 peripheral nerve injuries sustained in war by 100 consecutive service men and women injured in Iraq and Afghanistan. Their mean age was 26.5 years (18.1 to 42.6), the median interval between injury and first review was 4.2 months (mean 8.4 months (0.36 to 48.49)) and median follow-up was 28.4 months (mean 20.5 months (1.3 to 64.2)). The nerve lesions were predominantly focal prolonged conduction block/neurapraxia in 116 (45%), axonotmesis in 92 (35%) and neurotmesis in 53 (20%) and were evenly distributed between the upper and the lower limbs. Explosions accounted for 164 (63%): 213 (82%) nerve injuries were associated with open wounds. Two or more main nerves were injured in 70 patients. The ulnar, common peroneal and tibial nerves were most commonly injured. In 69 patients there was a vascular injury, fracture, or both at the level of the nerve lesion. Major tissue loss was present in 50 patients: amputation of at least one limb was needed in 18. A total of 36 patients continued in severe neuropathic pain. This paper outlines the methods used in the assessment of these injuries and provides information about the depth and distribution of the nerve lesions, their associated injuries and neuropathic pain syndromes.

Download full-text


Available from: Arul Ramasamy
  • Source
    • "Improving treatment outcomes after peripheral nerve injury (PNI) remains an important goal for researchers and clinicians worldwide. With over 300,000 annual upper extremity injuries, approximately 100,000 surgical repairs in Europe alone [1], [2], and an increasing incidence of blast injuries sustained during warfare [3], [4], there is a recognized and compelling need to accelerate peripheral nerve regeneration techniques and technologies; this has resulted in the development of peripheral nerve microsurgery in the 1960s and the subsequent refinement of a range of surgical techniques and treatments [5], [6]. Despite these advances, motor outcomes for patients remain delayed, unpredictable and usually incomplete [1], [2], [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral nerve injury (PNI), a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout nerves in a PNI model. The methods developed in this study could advance PNI research allowing both researchers and clinicians to further understand the individual events of axonal degeneration and regeneration on a multifaceted level.
    Full-text · Article · Apr 2014 · PLoS ONE
  • Source
    • "Cellular mechanisms are emerging that include the classical changes of the diabetic milieu (Bierhaus and Nawroth, 2012; Bierhaus et al., 2012) however various studies have also identified signatures of neuroinflammation as critical components of painful diabetic polyneuropathy (Pabreja et al., 2011; Vincent et al., 2011). Pathological neuro-immune communication has also been associated with painful neuropathy that occurs in up to 50% of patients with traumatic peripheral nerve injury as a consequence of accidents, warfare or surgical procedures (Myers et al., 2006; Ciaramitaro et al., 2010; Birch et al., 2012). Also the neurogenic complex regional pain syndrome (CRPS) occurring as a complication of bone fracture, tissue injury or surgical interventions has a neuro-inflammatory component (Parkitny et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs - and microRNAs (miRNAs) in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.
    Full-text · Article · Oct 2013 · Frontiers in Molecular Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic amputations remain one of the most emotionally disturbing wounds of conflict, as demonstrated by their frequent use in films to illustrate the horrors of war. Unfortunately, they remain common injuries, particularly following explosions, and, in addition, many survivors require primary amputation for unsalvageable injuries or to save their life. A third group, late amputations, is being increasingly recognised, often as a result of the sequelae of complex foot injuries. This article will look at the epidemiology of these injuries and their acute management, complications and outcome.
    Full-text · Article · May 2013
Show more