The potential impact of relative biological effectiveness uncertainty on charged particle treatment prescriptions

Gray Institute for Radiation Oncology and Biology, University of Oxford, Headington, Oxford, UK.
The British journal of radiology (Impact Factor: 2.03). 12/2011; 84 Spec No 1(special_issue_1):S61-9. DOI: 10.1259/bjr/36792876
Source: PubMed


There continues to be uncertainty regarding the relative biological effectiveness (RBE) values that should be used in charged particle radiotherapy (CPT) prescriptions using protons and heavier ions. This uncertainty could potentially offset the physical dose advantage gained by exploiting the Bragg peak effect and it needs to be clearly understood by clinicians and physicists. This paper introduces a combined radiobiological and physical sparing factor (S). This factor includes the ratio of the most relevant physical doses in tumour and normal tissues in combination with their respective RBE values and can be extended to contain the uncertainties in RBE. S factors can be used to study, in a simplified way for tentative modelling, those clinical situations in which high-linear energy transfer (LET) irradiations are likely to prove preferable over their low-LET counterparts for a matched tumour iso-effect. In cases where CPT achieves an excellent degree of normal tissue sparing, the radiobiological factors become less important and any uncertainties in the tumour and healthy tissue RBE values are correspondingly less problematic. When less normal tissue sparing can be achieved, however, the RBE uncertainties assume greater relevance and will affect the reliability of the dose-prescription methodology. More research is required to provide accurate RBE estimation, focusing attention on the associated statistical uncertainties and potential differences in RBE between different tissue types.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.
    No preview · Article · Dec 2011 · The British journal of radiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1. Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques. Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems. Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam.
    Full-text · Article · Nov 2013 · Medical Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The biological optimization of proton therapy can be achieved only through a detailed evaluation of relative biological effectiveness (RBE) variations along the full range of the Bragg curve. The clinically used RBE value of 1.1 represents a broad average, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak (SOBP). With particular attention to the key endpoint of cell survival, our work presents a comparative investigation of cell killing RBE variations along monoenergetic (pristine) and modulated (SOBP) beams using human normal and radioresistant cells with the aim to investigate the RBE dependence on LET and intrinsic radiosensitvity. Methods and materials: Human fibroblasts (AG01522) and glioma (U87) cells were irradiated at 6 depth positions along pristine and modulated 62-MeV proton beams at the INFN-LNS (Catania, Italy). Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and the local effect model (LEM). Results: We observed significant cell killing RBE variations along the proton beam path, particularly in the distal region showing strong dose dependence. Experimental RBE values were in excellent agreement with the LEM predicted values, indicating dose-averaged LET as a suitable predictor of proton biological effectiveness. Data were also used to validate a parameterized RBE model. Conclusions: The predicted biological dose delivered to a tumor region, based on the variable RBE inferred from the data, varies significantly with respect to the clinically used constant RBE of 1.1. The significant RBE increase at the distal end suggests also a potential to enhance optimization of treatment modalities such as LET painting of hypoxic tumors. The study highlights the limitation of adoption of a constant RBE for proton therapy and suggests approaches for fast implementation of RBE models in treatment planning.
    Full-text · Article · Jun 2014 · International Journal of Radiation OncologyBiologyPhysics
Show more