Article

Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System

Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Neuron (Impact Factor: 15.05). 02/2012; 73(4):713-28. DOI: 10.1016/j.neuron.2011.12.021
Source: PubMed

ABSTRACT

Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair.

Download full-text

Full-text

Available from: Eve Seuntjens
  • Source
    • "Briefly, OLIG1 regulates the expression of several genes involved in oligodendroglial maturation, including MBP, myelin oligodendrocytic glycoprotein, myelin proteolipid protein, and zinc finger protein 488 (Arnett et al., 2004; Xin et al., 2005; Wang et al., 2006; Guo et al., 2010). Additionally, OLIG2 has been found to play several critical roles in oligodendrocyte differentiation including enhancing the expression of Sox10 and Sip 1, proteins that enhance oligodendrogial activity and maturation of NG2-OPCs (Wang et al., 2006; Kuspert et al., 2011; Weng et al., 2012; Yu et al., 2013). However, OLIG2 also has been identified as a transcription repressor for several targets and consequently has been implicated in human glioma (Lee et al., 2005; Ligon et al., 2007; Mehta et al., 2011). "

    Full-text · Dataset · Apr 2015
  • Source
    • "Briefly, OLIG1 regulates the expression of several genes involved in oligodendroglial maturation, including MBP, myelin oligodendrocytic glycoprotein, myelin proteolipid protein, and zinc finger protein 488 (Arnett et al., 2004; Xin et al., 2005; Wang et al., 2006; Guo et al., 2010). Additionally, OLIG2 has been found to play several critical roles in oligodendrocyte differentiation including enhancing the expression of Sox10 and Sip 1, proteins that enhance oligodendrogial activity and maturation of NG2-OPCs (Wang et al., 2006; Kuspert et al., 2011; Weng et al., 2012; Yu et al., 2013). However, OLIG2 also has been identified as a transcription repressor for several targets and consequently has been implicated in human glioma (Lee et al., 2005; Ligon et al., 2007; Mehta et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuron-glial antigen 2 (NG2) is a proteoglycan expressed predominantly in oligodendrocyte progenitor cells (OPCs). NG2-expressing OPCs (NG2-OPCs) are self-renewing cells that are widely distributed in the gray and white matter areas of the central nervous system. NG2-OPCs can mature into premyelinating oligodendrocytes and myelinating oligodendroglia which serve as the primary source of myelin in the brain. This review characterizes NG2-OPCs in brain structure and function, conceptualizes the role of NG2-OPCs in brain regions associated with negative reinforcement and relapse to drug seeking and discusses how NG2-OPCs are regulated by neuromodulators linked to motivational withdrawal. We hope to provide the readers with an overview of the role of NG2-OPCs in brain structure and function in the context of negative affect state in substance abuse disorders and to integrate our current understanding of the physiological significance of the NG2-OPCs in the adult brain.
    Full-text · Article · Dec 2014 · Frontiers in Pharmacology
  • Source
    • "At present, the mechanism for ZEB to switch from transcription repressors to activators remains poorly understood. In oligodendrocytes, Sip1 can activate Smad7 transcription and modulate various developmental stages [38]. Further, it has been demonstrated that ZEB2 can form complexes with the coactivators p300 and pCAF (p300/CBP associated factor) [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Downregulation of E-cadherin in solid tumors with regional migration and systematic metastasis is well recognized. In view of its significance in tumorigenesis and solid cancer progression, studies on the regulatory mechanisms are important for the development of target treatment and prediction of clinical behavior for cancer patients. The vertebrate zinc finger E-box binding homeobox (ZEB) protein family comprises 2 major members: ZEB1 and ZEB2. Both contain the motif for specific binding to multiple enhancer boxes (E-boxes) located within the short-range transcription regulatory regions of the E-cadherin gene. Binding of ZEB1 and ZEB2 to the spaced E-cadherin E-boxes has been implicated in the regulation of E-cadherin expression in multiple human cancers. The widespread functions of ZEB proteins in human malignancies indicate their significance. Given the significance of E-cadherin in the solid tumors, a deeper understanding of the functional role of ZEB proteins in solid tumors could provide insights in the design of target therapy against the migratory nature of solid cancers.
    Full-text · Article · Aug 2014 · BioMed Research International
Show more