ArticlePDF AvailableLiterature Review

Abstract and Figures

Oxidative stress and inflammation are established processes contributing to cardiovascular disease caused by atherosclerosis. However, antioxidant therapies tested in cardiovascular disease such as vitamin E, C and β-carotene have proved unsuccessful at reducing cardiovascular events and mortality. Although these outcomes may reflect limitations in trial design, new, more potent antioxidant therapies are being pursued. Astaxanthin, a carotenoid found in microalgae, fungi, complex plants, seafood, flamingos and quail is one such agent. It has antioxidant and anti-inflammatory effects. Limited, short duration and small sample size studies have assessed the effects of astaxanthin on oxidative stress and inflammation biomarkers and have investigated bioavailability and safety. So far no significant adverse events have been observed and biomarkers of oxidative stress and inflammation are attenuated with astaxanthin supplementation. Experimental investigations in a range of species using a cardiac ischaemia-reperfusion model demonstrated cardiac muscle preservation when astaxanthin is administered either orally or intravenously prior to the induction of ischaemia. Human clinical cardiovascular studies using astaxanthin therapy have not yet been reported. On the basis of the promising results of experimental cardiovascular studies and the physicochemical and antioxidant properties and safety profile of astaxanthin, clinical trials should be undertaken.
Content may be subject to copyright.
A preview of the PDF is not available
... It also has gene regulatory properties, influencing as such the Nrf2/ARE pathway in human cells to protect against oxidative stress and associated cell damage [19]. Astaxanthin has shown beneficial effects both in vitro and in vivo, highlighting its potential use for the prevention of various human ailments [16,[19][20][21][22][23]. As such, it has shown promises for protection against UV-induced photo-oxidation, inflammation, aging, diabetes, cancer and other diseases [16,20,24]. ...
... Astaxanthin has shown beneficial effects both in vitro and in vivo, highlighting its potential use for the prevention of various human ailments [16,[19][20][21][22][23]. As such, it has shown promises for protection against UV-induced photo-oxidation, inflammation, aging, diabetes, cancer and other diseases [16,20,24]. There is also some evidence indicating that astaxanthin can enhance the immune response and improve liver function and heart condition [25], thus making it a promising commodity for further commercial exploitation in the health supplement sector [24,26]. ...
Article
Full-text available
There has been increasing demands worldwide for bioactive compounds of natural origins, especially for the nutraceutical and food-supplement sectors. In this context, microalgae are viewed as sustainable sources of molecules with an array of health benefits. For instance, astaxanthin is a xanthophyll pigment with powerful antioxidant capacity produced by microalgae such as the chlorophyte Haematococcus sp., which is regarded as the most suitable organism for the mass production of this pigment. In this study, three Haematococcus sp. strains were cultivated using a batch mode under favourable conditions to promote vegetative growth. Their environment was altered in a second phase using a higher and constant illumination regime combined with either exposure to blue LED light, an osmotic shock (with NaCl addition) or supplementation with a phytohormone (gibberellic acid, GA3), a plant extract (ginger), an herbicide (molinate) or an oxidant reagent (hydrogen peroxide). The effects of these stressors were evaluated in terms of antioxidant response and astaxanthin and β-carotene accumulation. Overall, strain CCAP 34/7 returned the highest Trolox Equivalent Antioxidant Capacity (TEAC) response (14.1–49.1 µmoL Trolox eq. g− 1 of DW), while the highest antioxidant response with the Folin–Ciocalteu (FC) was obtained for strain RPFW01 (62.5–155 µmoL Trolox eq. g− 1 of DW). The highest β-β-carotene content was found in strain LAFW15 when supplemented with the ginger extract (4.8 mg. g− 1). Strain RPFW01 exposed to blue light returned the highest astaxanthin yield (2.8 mg. g− 1), 5-fold that of strain CCAP 34/7 on average. This study documents the importance of screening several strains when prospecting for species with potential to produce high-value metabolites. It highlights that strain-specific responses can ensue from exposure of cells to a variety of stressors, which is important for the adequate tailoring of a biorefinery pipeline. Graphical Abstract
... Well-known marine entities, such as astaxanthin, βcryptoxanthin, zeaxanthin and fucoxanthin are recognized antioxidant, undoubtedly helpful in cardiovascular prevention. In particular, astaxanthin improves blood lipid profile by increasing high density lipoprotein cholesterol, decreasing LDL-cholesterol, triglycerides, as well as lipid peroxidation (Fassett, 2012) [9] . Oral administration of astaxanthin for 5 weeks showed to delay the incidence of stroke in spontaneously hypertensive rats (Park et al. 2011) [18] . ...
... Well-known marine entities, such as astaxanthin, βcryptoxanthin, zeaxanthin and fucoxanthin are recognized antioxidant, undoubtedly helpful in cardiovascular prevention. In particular, astaxanthin improves blood lipid profile by increasing high density lipoprotein cholesterol, decreasing LDL-cholesterol, triglycerides, as well as lipid peroxidation (Fassett, 2012) [9] . Oral administration of astaxanthin for 5 weeks showed to delay the incidence of stroke in spontaneously hypertensive rats (Park et al. 2011) [18] . ...
Conference Paper
Full-text available
Carotenoids belong to a group of isoprenoid pigments which contains interesting natural capacities to support the human health. Human body cannot synthesize carotenoids, with the consumption of these fruits and vegetables, the requirement for carotenoids can be fulfilled. Shreds of evidences suggest that proper consumption of β-carotene and other carotenoids obtained from foods are associated with lower risk of several chronic diseases. The beneficial effects of carotenoids are due to its ability to be converted to vitamin A, their role as antioxidants, additionally, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Fruits and vegetables are good food sources of these compounds, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are also available in supplement form. The main purpose of this manuscript is to give the right concern about Carotenoids, it's benefits to health.
... However, very few have published literature to inform specific recommendations for these populations. Toward this aim, isolated antioxidants such as curcumin and astaxanthin have been shown to act as antioxidative/anti-inflammatory agents [318,319] that can improve aspects of cardiometabolic health [320][321][322][323], reduce biological markers of inflammation or oxidative stress, and improve recovery from muscle damaging exercise [324][325][326][327]. The challenge, however, with both of these ingredients is that their literature bases are limited in scope overall and are largely non-existent for first responders. ...
Article
Full-text available
This position stand aims to provide an evidence-based summary of the energy and nutritional demands of tactical athletes to promote optimal health and performance while keeping in mind the unique challenges faced due to work schedules, job demands, and austere environments. After a critical analysis of the literature, the following nutritional guidelines represent the position of the International Society of Sports Nutrition (ISSN). GENERAL RECOMMENDATIONS Nutritional considerations should include the provision and timing of adequate calories, macronutrients, and fluid to meet daily needs as well as strategic nutritional supplementation to improve physical, cognitive, and occupational performance outcomes; reduce risk of injury, obesity, and cardiometabolic disease; reduce the potential for a fatal mistake; and promote occupational readiness. MILITARY RECOMMENDATIONS Energy demands should be met by utilizing the Military Dietary Reference Intakes (MDRIs) established and codified in Army Regulation 40-25. Although research is somewhat limited, military personnel may also benefit from caffeine, creatine monohydrate, essential amino acids, protein, omega-3-fatty acids, beta-alanine, and L-tyrosine supplementation, especially during high-stress conditions. FIRST RESPONDER RECOMMENDATIONS Specific energy needs are unknown and may vary depending on occupation-specific tasks. It is likely the general caloric intake and macronutrient guidelines for recreational athletes or the Acceptable Macronutrient Distribution Ranges for the general healthy adult population may benefit first responders. Strategies such as implementing wellness policies, setting up supportive food environments, encouraging healthier food systems, and using community resources to offer evidence-based nutrition classes are inexpensive and potentially meaningful ways to improve physical activity and diet habits. The following provides a more detailed overview of the literature and recommendations for these populations.
... Carotenoids are a type of classic example of a bioactive metabolite frequently found in microalgae with numerous reported biological activities (Christaki et al., 2013;Gateau et al., 2017) (Table 7.2). Among them, astaxanthin has been studied for its potential role in regulating oxidative stress and reducing inflammation and subsequently cardiovascular disease caused by atherosclerosis (Fassett & Coombes, 2012;Kishimoto et al., 2016;Visioli & Artaria 2017). Astaxanthin is a lipid-soluble keto-carotenoid, a class of strong antioxidants, in which commercial production of this pigment has traditionally been performed by chemical synthesis (Davinelli et al., 2018). ...
Chapter
The field of research that explores the use of microalgae in biomedicine and health is complex and diverse. Numerous research avenues currently explore the use of microalgae in biomedicine and heath such as: focusing on establishing and boosting nutritional profiles for food applications; identification, characterisation and utilisation of microalgal metabolites with biological activity as functional ingredients and/or drugs; utilisation of recombinant technology to genetically modify the algae for use as production systems for enzymes, antibodies, growth factors, drugs, and vaccines; or the use of microalgae as a source of “biomaterial” for use in applications such as drug carriers or cellular scaffolds for tissue engineering. To illustrate the diversity of microalgae and its potential for utilisation in a wide variety of biomedical and heath care applications, this chapter will present a concise overview of this broad applicability of microalgae in biomedicine and health, while highlighting research that is also occurring into the production and biorefinery of these compounds to facilitate a viable transition from laboratory to commercial production. Thus, this chapter aims to bridge the knowledge gap between both existing and potentially new algae applications, in particular, the use of microalgae as a source of “biomaterials” for biomedicine and health applications.
... It is also a 2.8 times stronger antioxidant than lutein. These antioxidant properties of ASX illustrate why it is often beneficial in treatment of cardiovascular, immune, inflammatory, and neurodegenerative diseases [44,45]. ...
Article
Full-text available
Astaxanthin (ASX) is a natural product and one of the most powerful antioxidants known. It has significant effects on the metabolism of many animals, increasing fecundity, egg yolk volume, growth rates, immune responses, and disease resistance. A large part of the bioactivity of ASX is due to its targeting of mitochondria, where it inserts itself into cell membranes. Here, ASX stabilizes membranes and acts as a powerful antioxidant, protecting mitochondria from damage by reactive oxygen species (ROS). ROS are ubiquitous by-products of energy metabolism that must be tightly regulated by cells, lest they bind to and inactivate proteins, DNA and RNA, lipids, and signaling molecules. Most animals cannot synthesize ASX, so they need to acquire it in their diet. ASX is easily thermally denatured during extraction, and its high hydrophobicity limits its bioavailability. Our focus in this review is to contrast the bioactivity of different ASX stereoisomers and how extraction methods can denature ASX, compromising its bioavailability and bioactivity. We discuss the commercial sources of astaxanthin, structure of stereoisomers, relative bioavailability and bioactivity of ASX stereoisomers, mechanisms of ASX bioactivity, evolution of carotenoids, and why mitochondrial targeting makes ASX such an effective antioxidant.
... The role of carotenoids in cardiovascular health has been largely debated. Numerous observational trials have found inverse associations between plasma carotenoid concentrations and risk for CVD and CVD mortality [33][34][35][36]. A recent systematic review has summarized the evidence derived from randomized controlled trials on the effects of carotenoids on CVD health outcomes (e.g., oxidative stress markers and lipid profile) [34]. ...
Article
Full-text available
Carotenoids have been the object of numerous observational, pre-clinical and interventional studies focused on elucidating their potential impacts on human health. However, the large heterogeneity among the trials, in terms of study duration and characteristics of participants, makes any conclusion difficult to draw. The present study aimed to explore the current carotenoid research trends by analyzing the characteristics of the registered clinical trials. A total of 193 registered trials on ClinicalTrials.gov and ISRCTN were included in the revision. Eighty-three studies were performed with foods, one-hundred-five with food supplements, and five with both. Among the foods tested, tomatoes and tomato-based foods, and eggs were the most studied. Lutein, lycopene, and astaxanthin were the most carotenoids investigated. Regarding the goals, 52 trials were focused on studying carotenoids’ bioavailability, and 140 studies investigated the effects of carotenoids on human health. The main topics included eye and cardiovascular health. Recently, the research has focused also on two new topics: cognitive function and carotenoid–gut microbiota interactions. However, the current research on carotenoids is still mostly focused on the bioavailability and metabolism of carotenoids from foods and food supplements. Within this context, the impacts/contributions of food technologies and the development of new carotenoid formulations are discussed. In addition, the research is still corroborating the previous findings on vision and cardiovascular health. Much attention has also been devoted to new research areas, such as the carotenoid–microbiota interactions, which could contribute to explaining the metabolism and the health effects of carotenoids; and the relation between carotenoids and cognitive function. However, for these topics the research is still only beginning, and further studies are need.
Chapter
Carotenoids and especially astaxanthin play a dominant role in the pigmentation of aquaculture species like salmonids and crustaceans. The color is an important quality criterion for consumers of fish and shrimp. This chapter reviews the targeted species for pigmentation and the use of astaxanthin in these species, the factors influencing pigmentation, the deposition of astaxanthin with some insights in its absorption, deposition and metabolism and its role in reproduction. The biological functions related to health, immunity and its antioxidant properties are described in aquaculture species as well potential benefits for humans. This chapter also includes an update on the safety and the regulatory aspects of astaxanthin for use in aquaculture species and its consumption as seafood by humans.
Article
Gut microbiota and short-chain fatty acids (SCFAs) are recognized as key factors in the pathophysiology of irritable bowel syndrome. Astaxanthin is a carotenoid with strong antioxidant and anti-inflammatory activities. In this study, we examined the effects of astaxanthin on gut microbiota-, SCFAs-, and corticotropin-releasing factor (CRH)-induced intestinal hypermotility. Male Wistar rats (n=12 per group) were fed a diet with or without 0. 02% (w/w) astaxanthin for four weeks and CRH or saline was administered intravenously. The number of fecal pellets was counted 2 h after injection. Then the rats were sacrificed, and the cecal content were collected 3 h after injection. The number of feces was significantly increased by CRH injection in the control group (2.0 vs. 6.5; p=0.028), but not in the astaxanthin group (1.0 vs. 2.2; p=0.229) (n=6 per group). The cecal microbiota in the astaxanthin group was significantly altered compared with that in the control group. The concentrations of acetic acid (81.1 μmol/g vs. 103.9 μmol/g; p=0.015) and butyric acid (13.4 μmol/g vs. 39.2 μmol/g; p<0.001) in the astaxanthin group were significantly lower than that in the control group (n=12 per group). Astaxanthin attenuates CRH-induced intestinal hypermotility and alters the composition of gut microbiota and SCFAs.
Article
Full-text available
Nonalcoholic fatty liver disease is a major contributor to chronic liver disease worldwide, and 10%-20% of nonalcoholic fatty liver progresses to nonalcoholic steatohepatitis (NASH). Astaxanthin is a kind of natural carotenoid, mainly derived from microorganisms and marine organisms. Due to its special chemical structure, astaxanthin has strong antioxidant activity and has become one of the hotspots of marine natural product research. Considering the unique chemical properties of astaxanthin and the complex pathogenic mechanism of NASH, astaxanthin is regarded as a significant drug for the prevention and treatment of NASH. Thus, this review comprehensively describes the mechanisms and the utility of astaxanthin in the prevention and treatment of NASH from seven aspects: antioxidative stress, inhibition of inflammation and promotion of M2 macrophage polarization, improvement in mitochondrial oxidative respiration, regulation of lipid metabolism, amelioration of insulin resistance, suppression of fibrosis, and liver tumor formation. Collectively, the goal of this work is to provide a beneficial reference for the application value and development prospect of astaxanthin in NASH.
Article
Full-text available
The classification of functional foods based on their usefulness in the management of diseases and bodily conditions is currently absent from modern academia. Benefits from a system classifying functional foods by the amount of scholarly research performed on functional foods could be useful in managing diseases, informing the public, and legitimizing functional food as a consistent method for well-being promotion. The purpose of this study is to exemplify a previously proposed 16-step system by which functional foods may be ranked according to which studies have been conducted, highlighting their abilities. Listings would include common chronic diseases affecting first-world individuals; diabetes, obesity, cancer, heart disease, and Alzheimer’s/dementia. The proposed system would implement an alphanumeric code of ‘A’, ‘B’, or ‘C’, depending on if foods have undergone epidemiological studies, clinical trials, and aftermarket research, only epidemiological and clinical studies, or have only been certified as a functional food. Current statistics discerning the prevalence of the listed chronic disease are utilized to contextualize the uniqueness of each bioactive compound and demonstrate the variance of effect by functional food products. Additionally, individual bioactive compounds are analyzed, denoting their efficacy in observable trials to better contextualize food function. From the proposed system, many prospective functional food products would not be eligible for classification by standards previously proposed in the 16-step plan. Taking into consideration current literature, the lack of standardized testing and optimal dosage leaves much to be desired in classifying functional food products. This study aims to exemplify a viable system by which functional foods can currently be analyzed and ranked based on empirical research studies. With suitable support from these studies, bioactive compounds and their subsequent food vehicles will be justly classified within an easy-to-recognize system. As the field of functional food grows, more factors to the analytical process may need to be applied, especially should the definition of functional foods categorize products in a way that aids the FDA’s system.Keywords: Functional Food, Functional Food Classification, Bioactive Compounds, Classification of Bioactive Compounds, Aftermarket research
Article
It has been suggested that increased intake of various antioxidant vitamins reduces the incidence rates of vascular disease, cancer, and other adverse outcomes. METHODS: 20,536 UK adults (aged 40-80) with coronary disease, other occlusive arterial disease, or diabetes were randomly allocated to receive antioxidant vitamin supplementation (600 mg vitamin E, 250 mg vitamin C, and 20 mg beta-carotene daily) or matching placebo. Intention-to-treat comparisons of outcome were conducted between all vitamin-allocated and all placebo-allocated participants. An average of 83% of participants in each treatment group remained compliant during the scheduled 5-year treatment period. Allocation to this vitamin regimen approximately doubled the plasma concentration of alpha-tocopherol, increased that of vitamin C by one-third, and quadrupled that of beta-carotene. Primary outcomes were major coronary events (for overall analyses) and fatal or non-fatal vascular events (for subcategory analyses), with subsidiary assessments of cancer and of other major morbidity. FINDINGS: There were no significant differences in all-cause mortality (1446 [14.1%] vitamin-allocated vs 1389 [13.5%] placebo-allocated), or in deaths due to vascular (878 [8.6%] vs 840 [8.2%]) or non-vascular (568 [5.5%] vs 549 [5.3%]) causes. Nor were there any significant differences in the numbers of participants having non-fatal myocardial infarction or coronary death (1063 [10.4%] vs 1047 [10.2%]), non-fatal or fatal stroke (511 [5.0%] vs 518 [5.0%]), or coronary or non-coronary revascularisation (1058 [10.3%] vs 1086 [10.6%]). For the first occurrence of any of these "major vascular events", there were no material differences either overall (2306 [22.5%] vs 2312 [22.5%]; event rate ratio 1.00 [95% CI 0.94-1.06]) or in any of the various subcategories considered. There were no significant effects on cancer incidence or on hospitalisation for any other non-vascular cause. INTERPRETATION: Among the high-risk individuals that were studied, these antioxidant vitamins appeared to be safe. But, although this regimen increased blood vitamin concentrations substantially, it did not produce any significant reductions in the 5-year mortality from, or incidence of, any type of vascular disease, cancer, or other major outcome.
Article
To understand the roles of carotenoids as singlet oxygen quenchers in marine organisms, quenching activities of eight major carotenoids, astaxanthin, canthaxanthin, β-carotene, zeaxanthin, lutein, tunaxanthin, fucoxanthin and halocynthiaxanthin were examined according to the method using a thermodissociable endoperoxide of 1,4-dimethylnaphthalene as a singlet oxygen generator. The second-order rate constant for the singlet oxygen quenching activity by each carotenoid was determined, suggesting that an increasing number of conjugated double bonds in carotenoid was proportional to greater quenching activity. The quenching activity of each carotenoid was found to be approximately 40 to 600 times greater than that of α-tocopherol. The potency of these carotenoids suggests that they may play a role in protecting marine organisms from active oxygen species.
Article
Background. Epidemiologic evidence indicates that diets high in carotenoid-rich fruits and vegetables, as well as high serum levels of vitamin E (alpha-tocopherol) and beta carotene, are associated with a reduced risk of lung cancer. Methods. We performed a randomized, double-blind, placebo-controlled primary-prevention trial to determine whether daily supplementation with alpha-tocopherol, beta carotene, or both would reduce the incidence of lung cancer and other cancers. A total of 29,133 male smokers 50 to 69 years of age from southwestern Finland were randomly assigned to one of four regimens: alpha-tocopherol (50 mg per day) alone, beta carotene (20 mg per day) alone, both alpha-tocopherol and beta carotene, or placebo. Follow-up continued for five to eight years. Results. Among the 876 new cases of lung cancer diagnosed during the trial, no reduction in incidence was observed among the men who received alpha-tocopherol (change in incidence as compared with those who did not, -2 percent; 95 percent confidence interval, -14 to 12 percent). Unexpectedly, we observed a higher incidence of lung cancer among the men who received beta carotene than among those who did not (change in incidence, 18 percent; 95 percent confidence interval, 3 to 36 percent). We found no evidence of an interaction between alpha-tocopherol and beta carotene with respect to the incidence of lung cancer. Fewer cases of prostate cancer were diagnosed among those who received alpha-tocopherol than among those who did not. Beta carotene had little or no effect on the incidence of cancer other than lung cancer. Alpha- tocopherol had no apparent effect on total mortality, although more deaths from hemorrhagic stroke were observed among the men who received this supplement than among those who did not. Total mortality was 8 percent higher (95 percent confidence interval, 1 to 16 percent) among the participants who received beta carotene than among those who did not, primarily because there were more deaths from lung cancer and ischemic heart disease. Conclusions. We found no reduction in the incidence of lung cancer among male smokers after five to eight years of dietary supplementation with alpha-tocopherol or beta carotene. In fact, this trial raises the possibility that these supplements may actually have harmful as well as beneficial effects.
Article
Background: It has been suggested that increased intake of various antioxidant vitamins reduces the incidence rates of vascular disease, cancer, and other adverse outcomes. Methods: 20,536 UK adults (aged 40-80) with coronary disease, other occlusive arterial disease, or diabetes were randomly allocated to receive antioxidant vitamin supplementation (600 mg vitamin E, 250 mg vitamin C, and 20 mg beta-carotene daily) or matching placebo. Intention-to-treat comparisons of outcome were conducted between all vitamin-allocated and all placebo-allocated participants. An average of 83% of participants in each treatment group remained compliant during the scheduled 5-year treatment period. Allocation to this vitamin regimen approximately doubled the plasma concentration of alpha-tocopherol, increased that of vitamin C by one-third, and quadrupled that of beta-carotene. Primary outcomes were major coronary events (for overall analyses) and fatal or non-fatal vascular events (for subcategory analyses), with subsidiary assessments of cancer and of other major morbidity. Findings: There were no significant differences in all-cause mortality (1446 [14.1%] vitamin-allocated vs 1389 [13.5%] placebo-allocated), or in deaths due to vascular (878 [8.6%] vs 840 [8.2%]) or non-vascular (568 [5.5%] vs 549 [5.3%]) causes. Nor were there any significant differences in the numbers of participants having non-fatal myocardial infarction or coronary death (1063 [10.4%] vs 1047 [10.2%]), non-fatal or fatal stroke (511 [5.0%] vs 518 [5.0%]), or coronary or non-coronary revascularisation (1058 [10.3%] vs 1086 [10.6%]). For the first occurrence of any of these "major vascular events", there were no material differences either overall (2306 [22.5%] vs 2312 [22.5%]; event rate ratio 1.00 [95% CI 0.94-1.06]) or in any of the various subcategories considered. There were no significant effects on cancer incidence or on hospitalisation for any other non-vascular cause. Interpretation: Among the high-risk individuals that were studied, these antioxidant vitamins appeared to be safe. But, although this regimen increased blood vitamin concentrations substantially, it did not produce any significant reductions in the 5-year mortality from, or incidence of, any type of vascular disease, cancer, or other major outcome.