Unraveling the Global microRNAome Responses to Ionizing Radiation in Human Embryonic Stem Cells

Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS ONE (Impact Factor: 3.23). 02/2012; 7(2):e31028. DOI: 10.1371/journal.pone.0031028
Source: PubMed


MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes), and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of radiation in hESC.

Download full-text


Available from: Nikita V Sokolov
  • Source
    • "miRNA have been shown to play a role in the regulation of cell proliferation, cell death and tumorigenesis. miRNA responses in cells exposed to IR have been reported in many publications [20, 21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene regulation in cells exposed to ionizing radiation (IR) occurs at the transcriptional and post-transcriptional levels. Recent studies have suggested that micro-RNA (miRNA) play a significant role in post-transcriptional gene regulation in irradiated cells. miRNA are RNA molecules 18-24 nucleotides in length that are involved in negatively regulating the stability or translation of target messenger RNA. Previous studies from our laboratory have shown that the expression of various miRNA is altered in IR-treated cells. In the present study we monitored genome-wide expression changes of miRNA transcriptome by massively parallel sequencing of human cells irradiated with X-rays. The baseline expression of 402 miRNA indicated a wide range of modulation without exposure to IR. Differences in the expression of many miRNA were observed in a time-dependent fashion following radiation treatment. The Short Time-series Expression Miner (STEM) clustering tool was used to characterize 190 miRNA to six statistically significant temporal expression profiles. miR-19b and miR-93 were induced and miR-222, miR-92a, and miR-941 were repressed after radiation treatment. miR-142-3p, miR-142-5p, miR-107, miR-106b, miR-191, miR-21, miR-26a, miR-182, miR-16, miR-146a, miR-22 and miR-30e exhibited two peaks of induction: one at 8 h and the other at 24 h post-irradiation. miR-378, miR-let-7a, miR-let-7g, miR-let-7f, miR-103b, miR-486-3p, miR-423-5p, miR-4448, miR-3607-5p, miR-20b, miR-130b, miR-155, miR-181, miR-30d and miR-378c were induced only at the 8-h time-point. This catalogue of the inventory of miRNA that are modulated as a response to radiation exposure will be useful for explaining the mechanisms of gene regulation under conditions of stress.
    Full-text · Article · Mar 2013 · Journal of Radiation Research
  • Source
    • "We believe hESC cultures may provide such a useful model system. However, it is only recently that attempts began to comprehensively characterize the radioresponse of hESCs [29–32,58–60]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a great deal of uncertainty on how low (≤0.1 Gy) doses of ionizing radiation (IR) affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests' radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing "early" and "late" radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures.
    Full-text · Article · Jan 2013 · International Journal of Molecular Sciences
  • Source
    • "In response to DNA damage caused by ionizing or UV radiation, the expression of cellular miRNAs undergoes global alteration [28,44–46]. DDR can regulate miRNA expression at the transcriptional level; for example, the miR-34a primary transcript has been shown to be directly transactivated by p53 following DNA damage [47–49]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dicer is the key component of the RNA interference pathway. Our group and others have reported that knockdown or knockout of Dicer leads to DNA damage in mammalian cells. Two groups recently showed that efficiency of DNA damage repair was greatly reduced in Dicer-deficient cells and that Dicer-dependent small RNAs (~21 nucleotides) produced from the sequences in the vicinity of DNA double-strand break sites were essential for DNA damage repair. Moreover, accumulating data have suggested that miroRNAs play pivotal roles in DNA damage repair. In this review, we discuss the molecular mechanisms by which loss of Dicer leads to DNA damage, as well as the role of Dicer in tumorigenesis.
    Full-text · Article · Dec 2012 · International Journal of Molecular Sciences
Show more