RNA interference targeting virion core protein ORF095 inhibits Goatpox virus replication in Vero cells

Key Laboratory of Animal virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Gansu, PR China.
Virology Journal (Impact Factor: 2.18). 02/2012; 9(1):48. DOI: 10.1186/1743-422X-9-48
Source: PubMed


Goatpox is an economically important disease in goat and sheep-producing areas of the world. Many vaccine strategies developed to control the disease are not yet completely successful. Hairpin expression vectors have been used to induce gene silencing in a large number of studies on viruses. However, none of these studies has been attempted to study GTPV. In the interest of exploiting improved methods to control goat pox, it is participated that RNAi may provide effective protection against GTPV. In this study we show the suppression of Goatpox virus (GTPV) replication via knockdown of virion core protein using RNA interference.
Four short interfering RNA (siRNA) sequences (siRNA-61, siRNA-70, siRNA-165 and siRNA-296) against a region of GTPV ORF095 were selected. Sense and antisense siRNA-encoding sequences separated by a hairpin loop sequence were designed as short hairpin RNA (shRNA) expression cassettes under the control of a human U6 promoter. ORF095 amplicon was generated using PCR, and then cloned into pEGFP-N1 vector, named as p095/EGFP. p095/EGFP and each of the siRNA expression cassettes (p61, p70, p165 and p296) were co-transfected into BHK-21 cells. Fluorescence detection, flow cytometric analysis, retro transcription PCR (RT-PCR) and real time PCR were used to check the efficiency of RNAi. The results showed that the ORF095-specific siRNA-70 effectively down-regulated the expression of ORF095. When Vero cells were transfected with shRNA expression vectors (p61/GFP, p70/GFP, p165/GFP and p296/GFP) and then infected with GTPV, GTPV-ORF095-70 was found to be the most effective inhibition site in decreasing cytopathic effect (CPE) induced by GTPV. The results presented here indicated that DNA-based siRNA could effectively inhibit the replication of GTPV (approximately 463. 5-fold reduction of viral titers) on Vero cells.
This study demonstrates that vector-based shRNA methodology can effectively inhibit GTPV replication on Vero cells. Simultaneously, this work represents a strategy for controlling goatpox, potentially facilitating new experimental approaches in the analysis of both viral and cellular gene functions during of GTPV infection.

Download full-text


Available from: Xuepeng Cai
  • Source
    • "RNA interference (RNAi) is a conserved gene-silencing mechanism that is induced by 19- to 27-nucleotide (nt) small interfering RNA (siRNA) molecules that are homologous to the target genes [8, 9]. RNAi technology is not only a powerful tool for functional genomics studies but is also a potentially useful antiviral method, and it is increasingly being used to inhibit the replication of viral pathogens [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Orf, which is caused by orf virus (ORFV), is distributed worldwide and is endemic in most sheep- and/or goat-raising countries. RNA interference (RNAi) pathways have emerged as important regulators of virus-host cell interactions. In this study, the specific effect of RNAi on the replication of ORFV was explored. The application of RNA interference (RNAi) inhibited the replication of ORFV in cell culture by targeting the ORF025 gene of ORFV, which encodes the viral polymerase. Three small interfering RNA (siRNA) (named siRNA704, siRNA1017 and siRNA1388) were prepared by in vitro transcription. The siRNAs were evaluated for antiviral activity against the ORFV Jilin isolate by the observation of cytopathic effects (CPE), virus titration, and real-time PCR. After 48 h of infection, siRNA704, siRNA1017 and siRNA1388 reduced virus titers by 59- to 199-fold and reduced the level of viral replication by 73-89 %. These results suggest that these three siRNAs can efficiently inhibit ORFV genome replication and infectious virus production. RNAi targeting of the DNA polymerase gene is therefore potentially useful for studying the replication of ORFV and may have potential therapeutic applications.
    Preview · Article · Nov 2013 · Archives of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The family Poxviridae includes several viruses of medical and veterinary importance. Global concerted efforts combined with an intensive mass-vaccination campaign with highly efficaceious live vaccine of vaccinia virus have led to eradication of smallpox. However, orthopoxviruses affecting domestic animals continue to cause outbreaks in several endemic countries. Different kinds of vaccines starting from conventional inactivated/attenuated to recombinant protein-based vaccines have been used for control of poxvirus infections. Live virus homologous vaccines are currently in use for diseases including capripox, parapox, camelpox and fowlpox, and these vaccines are highly effective in eliciting (with the exception of parapoxviruses) long-lasting immunity. Attenuated strains of poxviruses have been exploited as vectored vaccines to deliver heterologous immunogens, many of them being licensed for use in animals. Worthy of note are vaccinia virus, fowlpox virus, capripoxvirus, parapoxvirus and canary pox, which have been successfully used for developing new-generation vaccines targeting many important pathogens. Remarkable features of these vaccines are thermostability and their ability to engender both cellular and humoral immune responses to the target pathogens. This article updates the important vaccines available for poxviruses of livestock and identifies some of the research gaps in the present context of poxvirus research.
    Full-text · Article · Nov 2012 · Expert Review of Vaccines
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infectious salmon anemia virus (ISAV) has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi) is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA) to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3) with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP), fusion (F), hemagglutinin (HE) and matrix (M) proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE) and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.
    Full-text · Article · Mar 2015 · Frontiers in Microbiology
Show more