Field emission from in situ-grown vertically aligned SnO

State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China. .
Nanoscale Research Letters (Impact Factor: 2.78). 02/2012; 7(1):117. DOI: 10.1186/1556-276X-7-117
Source: PubMed


Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters.

Download full-text


Available from: Zhihua Zhou
  • Source
    • "It has excellent chemical stability. The optical, electrical, and other physicochemical properties1234of ZnO nanomaterials can be tuned by changing its morphology, thus it has been widely applied in many promising devices such as optoelectronics[5,6], field emission arrays[7,8], sensors[9], light-emitting devices[10], solar cells[11,12], and memory devices[13]. ZnO nanomaterials have various morphologies, such as nanotubes, nanowires, nanorods, nanopyramids, and nanopins, depending on the synthesis method. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this research, the zinc oxide (ZnO) microrods were grown by hydrothermal method on fluorine-doped tin oxide (FTO) glass functionalized by self-assembled monolayer of octadecyltrimethoxysilane (ODS; CH3(CH2)17Si(OCH3)3). The sharp-tip or polygonal shape with specific facets at the top end of ZnO microrods can be obtained by post retention at low temperature. The morphologies were characterized by the field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM). The results confirm that the morphology change at the top end is due to self-etching. The mechanism responsible for the formation of various top-end morphologies was proposed. The specific facets that left after 6-h retention were identified. The room-temperature micro-photoluminescence spectra showed a strong ultraviolet emission at 387 nm, and a broad emission at a range of from 500 to 700 nm. The morphology change also influences the photoluminescence (PL) spectra. A satellite peak in the UV emission spectra was observed. The peak may be attributed to the morphology effect of the microrods.
    Full-text · Article · Oct 2015 · Nanoscale Research Letters
  • Source
    • "One-dimensional (1D) nanomaterials are attractive building blocks for future high-performance nanoscale devices and sensors [1-3]. With their unique structural characteristics and versatile physical properties, semiconductor nanowires and nanoribbons have been applied to photodetectors [4], nanolasers [5], surface-enhanced Raman scattering (SERS) [6], solar cells [7], sensors, and so on [8,9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Monocrystal SnO2 and Pd-SnO2 nanoribbons have been successfully synthesized by thermal evaporation, and novel ethanol sensors based on a single Pd-SnO2 nanoribbon and a single SnO2 nanoribbon were fabricated. The sensing properties of SnO2 nanoribbon (SnO2 NB) and Pd-doped SnO2 nanoribbon (Pd-SnO2 NB) sensors were investigated. The results indicated that the SnO2 NB showed a high sensitivity to ethanol and the Pd-SnO2 NB has a much higher sensitivity of 4.3 at 1,000 ppm of ethanol at 230°C, which is the highest sensitivity for a SnO2-based NB. Pd-SnO2 NB can detect ethanol in a wide range of concentration (1 ~ 1,000 ppm) with a relatively quick response (recovery) time of 8 s (9 s) at a temperature from 100°C to 300°C. In the meantime, the sensing capabilities of the Pd-SnO2 NB under 1 ppm of ethanol at 230°C will help to promote the sensitivity of a single nanoribbon sensor. Excellent performances of such a sensor make it a promising candidate for a device design toward ever-shrinking dimensions because a single nanoribbon device is easily integrated in the electronic devices.
    Full-text · Article · Sep 2014 · Nanoscale Research Letters
  • Source
    • "In the past decade, significant interest has emerged in the synthesis of one-dimensional semiconductor materials, such as Si [1-3], SiC [4,5], GaN [6-8], SnO2 [9] and ZnO [10-13]. Among these nanoscale semiconductors, ZnO has attracted a great deal of attention because of its potential as a large direct band gap semiconductor (Eg is about 3.35 eV at room temperature) with high exciton binding energy (60 meV). "
    [Show abstract] [Hide abstract]
    ABSTRACT: ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices.
    Full-text · Article · Apr 2012 · Nanoscale Research Letters
Show more