Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS

Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, Florida, United States of America.
PLoS ONE (Impact Factor: 3.23). 02/2012; 7(2):e31254. DOI: 10.1371/journal.pone.0031254
Source: PubMed


A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25 × 10⁶ cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages.
Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10⁶ or 2.5 × 10⁶ cells from 13 weeks of age. A third, pre-symptomatic, group received 10⁶ cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10⁶ cells pre-symptomatically or 2.5 × 10⁶ cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups.
These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.

Download full-text


Available from: Nicole Kuzmin-Nichols
  • Source
    • "In our previous study of proliferation in the aging hippocampus with the MNC (Bachstetter et al. 2008), these cells were effective in inducing proliferation at these doses when delivered in combination (i.e., the whole MNC). To alter the dose of the individual cells such that all cells were delivered at 10 6 would have also been problematic, since there are dose-dependent effects of cell delivery and too many cells can have detrimental effects (Vendrame et al. 2004; Garbuzova-Davis et al. 2012). Therefore, 4.8× 10 5 cells were injected in the CD4+ group, 1.3×10 5 in the CD8+ group, 1.4×10 5 in the CD14+ group, 0.2× 10 5 in the CD133+ group, and 1×10 6 in the HUCB MNC group. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurogenesis occurs throughout life but significantly decreases with age. Human umbilical cord blood mononuclear cells (HUCB MNCs) have been shown to increase the proliferation of neural stem cells (NSCs) in the dentate gyrus (DG) of the hippocampus and the subgranular zone of aging rats (Bachstetter et al., BMC Neurosci 9:22, 2008), but it is unclear which fraction or combination of the HUCB MNCs are responsible for neurogenesis. To address this issue, we examined the ability of HUCB MNCs, CD4+, CD8+, CD3+, CD14+, and CD133+ subpopulations to increase proliferation of NSCs both in vitro and in vivo. NSCs were first grown in conditioned media generated from HUCB cultures, and survival and proliferation of NSC were determined with the fluorescein diacetate/propidium iodide and 5-bromo-2'-deoxyuridine incorporation assays, respectively. In a second study, we injected HUCB cells intravenously in young and aged Fisher 344 rats and examined proliferation in the DG at 1 week (study 2.1) and 2 weeks (study 2.2) postinjection. The effects of the HUCB MNC fractions on dendritic spine density and microglial activation were also assessed. HUCB T cells (CD3+, CD4+, and CD8+ cells) induced proliferation of NSCs (p < 0.001) and increased cell survival. In vivo, HUCB-derived CD4+ cells increased NSC proliferation at both 1 and 2 weeks while also enhancing the density of dendritic spines at 1 week and decreasing inflammation at 2 weeks postinjection. Collectively, these data indicate that a single injection of HUCB-derived T cells induces long-lasting effects and may therefore have tremendous potential to improve aging neurogenesis.
    Full-text · Article · Dec 2012 · Age
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron death, leading to muscle atrophy, paralysis, and death usually within 3 to 5 years after diagnosis. Most cases are sporadic, with still undefined etiopathogenesis. Both the innate and adaptive immune systems are involved in ALS, with special participation of T lymphocytes and microglia. Inflammation plays a dual role in the disease, protective and T regulatory cell rich in the early stages and deleterious as disease progresses. Attempts to modulate immune/inflammatory system response are reported in the literature, and while beneficial effects are achieved in ALS animal models, results of most clinical trials have been disappointing. The impaired blood–brain barrier is an important feature in the pathogenesis of ALS and likely affects the immune system response. The present review describes the role of the immune system in ALS pathogenesis and the tight coupling of immunity and central nervous system barrier function.
    No preview · Article · Sep 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nearly 1.5 million people in the US live with a spinal cord injury (SCI). The cost to the health system is estimated at over $10billion annually likely because over 65% of SCIs occur at the cervical level. Despite medical advances, many SCI patients still experience substantial neurological disability and high dependency with severe loss of motor, sensory and autonomic function. The consensus from a combination of in vitro studies and in vivo models is that mesenchymal or stromal cells, and possibly even neural progenitors, regardless of derivation act through the provision of trophic support and inflammatory modulation. Indeed, they have been found to secrete a wide spectrum of diffusible factors with known roles in both. As such, mesenchymal cells, obtainable from multiple tissues, are ideally suited to addressing many pathophysiological consequences of SCI. Advances in understanding the latter, structural and functional magnetic resonance imaging, image-guided microneurosurgical techniques and transplantable cell biology have enabled the clinical use of cell-based therapies. Of the twenty most recent cell therapy clinical trials for SCI, seven involve adult bone marrow mesenchymal cells and six others umbilical cord cells. This reflects the growing recognition of the clinical potential of perinatal cells. However, a limited understanding of how best to exploit the capabilities of these cells impedes a full-scale clinical deployment. This mini-review focuses on recent developments that are likely to facilitate the targeted application of these cells to treat specific secondary pathophysiological processes.
    Full-text · Article · Dec 2012 · Current Stem Cell Research & Therapy
Show more