AMPK isoform expression in the normal and failing hearts

Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
Journal of Molecular and Cellular Cardiology (Impact Factor: 4.66). 01/2012; 52(5):1066-73. DOI: 10.1016/j.yjmcc.2012.01.016
Source: PubMed


AMP-activated protein kinase (AMPK) is a master metabolic switch that plays an important role in energy homeostasis at the cellular and whole body level, hence a promising drug target. AMPK is a heterotrimeric complex composed of catalytic α-subunit and regulatory β- and γ-subunits with multiple isoforms for each subunit. It has been shown that AMPK activity is increased in cardiac hypertrophy and failure but it is unknown whether changes in subunit composition of AMPK contribute to the altered AMPK activity. In this study, we determined the protein expression pattern of AMPK subunit isoforms during cardiac development as well as during cardiac hypertrophy and heart failure in mouse heart. We also compared the findings in failing mouse heart to that of the human failing hearts in order to determine whether the mouse heart is a good model of AMPK in human diseases. In mouse developmental hearts, AMPK was highly expressed in the fetal stages and fell back to the adult level after birth. In the failing mouse heart, there was a significant increase in α2, β2, and γ2 subunits both at the mRNA and protein levels. In contrary, we found significant increases in the protein level of α1, β1 and γ2c subunits in human failing hearts with no change in the mRNA level. We also compared isoform-specific AMPK activity in the mouse and human failing hearts. Consistent with the literature, in the failing mouse heart, the α2 complexes accounted for ~2/3 of total AMPK activity while the α1 complexes accounted for the remaining 30-35%. In the human hearts, however, the contribution of α1-AMPK activity was significantly higher (>40%) in the non-failing hearts, and it further increased to 50% in the failing hearts. Thus, the human hearts have a greater amount of α1-AMPK activity compared to the rodent hearts. In summary, the protein level and the isoform distribution of AMPK in the heart change significantly during normal development as well as in heart failure. These observations provide a basis for future development of therapeutic strategies for targeting AMPK.

Full-text preview

Available from:
  • Source
    • "Activation of AMPK has been reported in numerous rodent models of cardiac injury (including pressure overload , hypoxia and ischemia) as an adaptive response and was associated with enhanced glucose uptake (Huang et al. 2014; Nishino et al. 2004; Tian et al. 2001). Elevated AMPK protein expression and activity have been demonstrated in human failing hearts, although AMPK expression has not been extensively studied in all forms of HF (Kim et al. 2012). Pharmacological activation of AMPK has been shown to inhibit the mTOR pathway and attenuate pressure overload-induced hypertrophy (Chan et al. 2004, 2008; Li et al. 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The onset of heart failure is typically preceded by cardiac hypertrophy, a response of the heart to increased workload, a cardiac insult such as a heart attack or genetic mutation. Cardiac hypertrophy is usually characterized by an increase in cardiomyocyte size and thickening of ventricular walls. Initially, such growth is an adaptive response to maintain cardiac function; however, in settings of sustained stress and as time progresses, these changes become maladaptive and the heart ultimately fails. In this review, we discuss the key features of pathological cardiac hypertrophy and the numerous mediators that have been found to be involved in the pathogenesis of cardiac hypertrophy affecting gene transcription, calcium handling, protein synthesis, metabolism, autophagy, oxidative stress and inflammation. We also discuss new mediators including signaling proteins, microRNAs, long noncoding RNAs and new findings related to the role of calcineurin and calcium-/calmodulin-dependent protein kinases. We also highlight mediators and processes which contribute to the transition from adaptive cardiac remodeling to maladaptive remodeling and heart failure. Treatment strategies for heart failure commonly include diuretics, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers and β-blockers; however, mortality rates remain high. Here, we discuss new therapeutic approaches (e.g., RNA-based therapies, dietary supplementation, small molecules) either entering clinical trials or in preclinical development. Finally, we address the challenges that remain in translating these discoveries to new and approved therapies for heart failure.
    Full-text · Article · Feb 2015 · Archive für Toxikologie
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated protein kinase (AMPK), the key sensor and regulator of cellular energy status, is a heterotrimeric enzyme with multiple isoforms for each subunit (α1/α 2; β1/β2; γ1/γ2/γ3). Mutations in PRKAG2, which encodes the γ2 regulatory subunit, cause a cardiomyopathy characterized by hypertrophy and conduction abnormalities. The two reported PRKAG2 transcript variants, γ2-short and γ2-long (encoding 328 and 569 amino acids respectively), are both widely expressed in adult tissues. We show that both γ2 variants are also expressed during cardiogenesis in mouse embryos; expression of the γ3 isoform was also detected unexpectedly at this stage. As neither γ2 transcript is cardiac specific nor differentially expressed during embryogenesis, it is paradoxical that the disease is largely restricted to the heart. However, a recently annotated γ2 transcript, termed γ2-3B as transcription starts at an alternative exon 3b, has been identified; it is spliced in-frame to exon 4 thus generating a protein of 443 residues in mouse with the first 32 residues being unique. It is increasingly expressed in the developing mouse heart and quantitative PCR analysis established that γ2-3B is the major PRKAG2 transcript (~60%) in human heart. Antibody against the novel N-terminal sequence showed that γ2-3B is predominantly expressed in the heart where it is the most abundant γ2 protein. The abundance of γ2-3B and its tissue specificity indicate that γ2-3B may have non-redundant role in the heart and hence mediate the predominantly cardiac phenotype caused by PRKAG2 mutations.
    Full-text · Article · Jun 2012 · Journal of Molecular and Cellular Cardiology

  • No preview · Article · Jul 2012 · Journal of Molecular and Cellular Cardiology
Show more